Calcium Looping Post Combustion CO$_2$ Capture: A promising technology for emission free cement production

M. Hornberger, H. Dieter, G. Scheffknecht

The 6th High Temperature Solid Looping Cycles Network Meeting, September 1st, 2015, Milan
Expertise in Lime based Fluidized Bed Processes

Fluidized Bed Processes
- Calcium Looping (CaL)
- Chemical Looping (CLC)
- Oxy-fuel CFB
- Sorption enhanced reforming (SER)
- Oxy-fuel SER

Fuels
- Biomass
- Waste
- Lignite / Coal

Measurement techniques
- Sorbent Characterization (TGA)
- Online gas analysis:
 - CO₂, CO, O₂, H₂, CH₄, SOₓ, NOₓ
- Non-condensable HC: GC
- Tar: wet chemical & online (FID)
- H₂S, HCl, NH₃: wet chemical

20 kWₜh DFB Pilot Facility

20 kWₜh electrically heated DFB System

5 kWₜh electrically heated FB batch System
Calcium Looping – Post Combustion CCS

- retrofitting to existing facilities
- low CO₂ separation cost
- low efficiency penalty
Calcium Looping – Post Combustion CCS

General conditions

- **Looping Ratio:** 2 - 10
- **Make-up Ratio:** < 0,1 - 0,4
- **Temperature**
 - T_{Calciner}: 850 - 1000 °C
 - $T_{\text{Carbonator}}$: 600 - 700 °C
- **Flue gas**
 - CO_2: ~ 15 %

![Diagram of Calcium Looping - Post Combustion CCS](image)
Calcium Looping – Pilot Plant (200 kW_{th})

Operation Conditions

- Flue Gas Load: 170 - 230 kW_{th}
- Sorbent Looping Ratio: 3 - 13 mol_{CaO}/mol_{CO_2}
- Total Solid Inventory: 70 - 120 kg CaO/CaCO_3
Operational Results – Carbonator

- **Over 90% capture efficiency** achieved over a wide range of operating conditions.
Operational Results – Oxy-fuel Calcination

- **O₂ Inlet Concentration**
 - recirculation rate: 28 %
 - \(\gamma_{\text{O}_2,\text{in},\text{dry}} \)
 - \(\gamma_{\text{O}_2,\text{in}} \)

- **CO₂ Outlet Concentration**
 - recirculation rate: 28 %
 - \(\gamma_{\text{CO}_2,\text{out},\text{dry}} \)

- **O₂ Excess Concentration**
 - recirculation rate: 28 %
 - \(\gamma_{\text{O}_2,\text{out},\text{dry}} \)

- **Calcination Temperature**

Graph showing temperature in °C versus height in m.
Operational Results – Oxy-fuel Calcination

- High inlet oxygen concentrations (> 50 vol.-%, dry) possible
- Lower recirculation rates for oxy-CaL calcination (additional CO₂ from calcination)
- Lower humidity of CaL flue gas
- Uniform isothermal conditions
Calcium Looping – Pilot Plant (200 kW$_{th}$)

Operation Conditions
- Flue Gas Load: 170 - 230 kW$_{th}$
- Sorbent Looping Ratio: 3 - 13 mol$_{CaO}$/mol$_{CO_2}$
- Total Solid Inventory: 70 - 120 kg CaO/CaCO$_3$

Carbonator
- CO$_2$ capture efficiency above 90 %

Calciner
- CO$_2$ outlet concentrations above 90 vol.-%, dry
- Inlet O$_2$ concentrations above 50 vol.-%, dry
- Excess O$_2$ outlet concentration below 3 vol.-%, dry
Cement Plant – Clinker Production and Properties

- Clinker composition
 - CaO: 60 - 70 %
 - SiO$_2$: 20 - 25 %
 - Al$_2$O$_3$: 2 - 6 %
 - Fe$_2$O$_3$: 0 - 6 %

- Structural change at 1400 °C (rotary kiln)
 - CaO + SiO$_2$ → (CaO)$_3$ · SiO$_2$ & (CaO)$_2$ · SiO$_2$

- Flue gas composition
 - high CO$_2$ concentration ~ 30 %
Cement Plant – CaL Integration

- synergy effect between cement plant and CaL-process

General conditions
- Looping Ratio: 2 - 4
- Make-up Ratio: > 1
- Flue gas
 - CO₂: 15 - 30 %
Summary

- Calcium looping for power plant application demonstrated at pilot plant scale
 - CO₂ capture efficiency over 90 %
 - CO₂ concentrations over 90 %

- Feasibility for cement plant application will be investigated at pilot plant scale
 - Effect of high CO₂ flue gas concentration
 - Influence of make-up ratio, sorbent looping ratio
 - Optimal operation conditions
Thank you for your interest!

Any Questions?

Contact:
Hornberger Matthias
Institute of Combustion and Power Plant Technology,
University of Stuttgart
matthias.hornberger@ifk.uni-stuttgart.de
http://www.ifk.uni-stuttgart.de
Extra Slides
Operational Results – Hydrodynamics

- stable hydrodynamic conditions
Equilibrium: \(\text{CaO} + \text{CO}_2 \rightleftharpoons \text{CaCO}_3 \)

Carbonation

\[\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \]

Calcination

\[\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \]

Outlet CO\(_2\) Conc. for 90\% Capture

Oxyfuel Flue Gas CO\(_2\) Concentration

Min \(T_{\text{Regenerator}} \)

Max \(T_{\text{Carbonator}} \)
Operational Results – Oxy-fuel Calcination

recirculation rate: 28 %

$y_{O_2, in, dry}$

$y_{O_2, in, wet}$

$y_{CO_2, out, dry}$

$y_{O_2, out, dry}$

O$_2$ Inlet Concentration in %

O$_2$ Outlet Concentration in %

O$_2$ Excess Concentration in %

Calcination Temperature

Height in m

Temperature in °C
Cement – CaL Integration

- synergy effect between cement plant and CaL-process

General conditions
- Looping Ratio: 2 - 4
- MakeUp Ratio: > 1
- Flue gas
 - CO_2: 15 - 30 %
Operational Results – Oxy-fuel Calcination

- Recirculation rate: 28%

Graphs showing concentration data over time and height.

Diagram illustrating calcination temperature.