Rules of Engagement for The Question:

SAY SOMETHING.

NO SPECIFICS. STAY OUT OF THE WEEDS.

DON’T PICK ON ANYONE...BUT PICK ON EVERYONE (INCLUDING MYSELF).

Are we able? In many cases yes

DETECT AND ATTRIBUTE: Sure. Able even without (or with very minimal) background. Detection can be a digital measurement. But, no one-size-fits-all. Every site presents different opportunities (targets), and challenges (targets to avoid).

QUANTIFY: Sure. Fugitive emission techniques are available. But, can we scramble quantification faster than we can fix the leak? Probably not. Quantification ability should be aimed at fast response to surface infrastructural leaks, because these are the likely failures (pumps, pipelines, gaskets, wells). Surface-relevant reservoir failures are much less likely.
Is it practical? In many cases probably not
(and hopefully I don’t end up on a committee for having said so)

BACKGROUND. Costly ecological research projects, or affordable screening for CO₂ loss? Background data is only required if 1) it is necessary for detection and/or attribution, and 2) if the background is statistically useful from a SNR perspective.

RESPONSIVENESS. Every wasted day gives CCS a black eye everywhere. If the world learned anything from the Kerr investigations, it should be that it dragged on too long. What’s the plan? Is it every reviewed or rehearsed? What if the site is flooded?

RISK. Why gamble on the practical improbability? If risk assessment says that there’s almost no point in doing anything but regular old well integrity work, let’s do that.

ROI. Building thinner onions. Throw the right things at the problem. Achieve the qualification goal with redundancy or a triple check. But avoid over-layering.

PARADIGM. “Monitoring”, or “testing for (absence of) leakage”? Is a tool actually useful enough if it can’t definitely validate absence of leakage every time it’s used? A high standard, but should be possible.