KNOWLEDGE SHARING

https://www.gov.uk/government/collections/carbon-capture-and-storage-knowledge-sharing

http://www.energy.alberta.ca/CCS/3845.asp
Pressure monitoring

IEA GHG Monitoring
Network meeting
(LBNL 2015)
The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies in which Royal Dutch Shell either directly or indirectly has control. Companies over which Shell has joint control are generally referred to as “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2014 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, June 11, 2015. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
■ Capture at Scotford Upgrader
■ 1 million tonnes CO\textsubscript{2}/year, capacity for 25 years – about 1/3rd of the upgrader’s emissions
■ 65 km pipeline
■ reduction: up to 250k cars (EU) equivalent (per year)
■ CCS – saline aquifer (BCS)

■ DNV – Storage & MMV plans certified
■ Quest in ‘Execute’ phase since Sept-2012
Capture:
- All modules on site July 2014
- All modules set in place mid August 2014
- Final mechanical completion February 2015

Quest Stripper Vessel Delivery
Quest Capture Site – Early Works construction site – August 2012
Quest Capture Site – March 2013
Quest Capture Site – March 2014
Quest Capture Site – September 2014
Quest Capture Site – March 2015
BCS Storage Complex

- Deep saline aquifer (~2km), porous sandstone (Por~16%, K>300mD to 1D)
- Multiple continuous seals to minimize containment risk
- No significant faulting visible from wells or seismic
- Well below hydrocarbon bearing formations(<1200m) and potable water zones (<200m)
- Few legacy wells, nearest at ~20 km

```
<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultimate Seal</td>
<td>85m</td>
<td>Prairie Evaporite</td>
</tr>
<tr>
<td>Deep MMV Target</td>
<td>84m</td>
<td>Winnipegosis</td>
</tr>
<tr>
<td>Ultimate Seal</td>
<td>84m</td>
<td>Upper Lotsberg</td>
</tr>
<tr>
<td>Secondary Seal</td>
<td>34m</td>
<td>Lower Lotsberg</td>
</tr>
<tr>
<td>Primary Seal</td>
<td>44m</td>
<td>MCS – Middle Cambrian Shale</td>
</tr>
<tr>
<td>Injection Target</td>
<td>41m</td>
<td>BCS – Basal Cambrian Sand</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PreCambrian Basement</td>
</tr>
</tbody>
</table>
```
DEEP MONITORING WELLS

- A deep monitoring well is drilled on each well pad only a few meters from the injection well into the Cooking Lake Formation.
- The cooking lake is a major regional aquifer made up on extensive sheet-like carbonates. It is depleted.
INJECTION AND MONITORING WELLS
Technical feasibility for pressure monitoring

- **Sensitivity**: must reliably verify the expected absence of fluid pressure increases above the storage complex

- **Coverage**: must be able to detect any unexpected leaks with regions of greatest containment risk

- **Time**: time to detection of an unexpected leak should be sufficient to trigger correct measures to prevent migration of fluids from the BCS to the ground water protection zone
Example analysis: Winepegosis (pre-drilling)

- Formation properties:
 - Thickness: 18m
 - Permeability: 10 – 50 mD
 - Porosity: 6%
 - Pore compressibility: 4.5×10^{-10} /Pa

- Brine properties
 - Viscosity: 0.9×10^{-3} Pa.s
 - Compressibility: 3×10^{-10} /Pa

- CO$_2$ properties
 - Viscosity: 0.6×10^{-4} Pa.s

- Based analysis on constant rate leaks
- Actual rates will slow down as delta pressure decreases

Example modelled responses (not current)

- Modeled two hypothetical leak rates, 6 kg/day and 600 kg/day. For reference we inject 2700 tonnes/day: 4000 years to leak 1 day’s injection at 600kg/day
Detection performance and uncertainty - example

- 6 kg/day
- High perm (thick), and low perm (thin)
- Different distances from leak
- Grey denotes gauge performance of standard quartz gauge

- High perm – early arrival but small response
- Low perm – later arrival but larger response
- Both cases = good detection
Uncertainty

- Insufficient permeability – will only become apparent with the well has been drilled
- Insufficient connectivity – the further away the greater the exposure to this risk
- Third party activities – it is important to know what is taking place near the well penetrations. Having multiple monitoring wells allows the regional signal to be extracted from the local signal
Conclusions – for this example

- All monitoring is site specific, but in this example the site is well suited for pressure detection
- In this example expect to detect leak rates of at least 6 kg/day
- Wells are only a few meters from injectors, but, in this example are sensitive to more distant leaks:
 - 1000m ... 5-20 days
 - 3500m ... 50-120 days
Shell Quest
• S/U in Q2/Q3
• Commercial Operations by year end