The Korean Activities of Oxy-Fuel Combustion

Youngju Kim, Sangil Seo, Jongsoo Kim

2nd Oxyfuel Combustion Conference Capricorn Resort, Yeppoon, Queensland, Australia 12th - 16th September 2011

CO₂

Contents

The Korean activities of Oxy-Fuel Combustion **Project** Outline

What We Have Done

What We Will Do

OXY-FUEL COMBUSTION R&D ORGANIZATION

1. Project Outline

Project Outline

Tentative Demo. Site (Youngdong TPP)

Plant 125MWe output STEAM Boiler Single-drum type radiant heat type Operation 1973 start Boiler : BHK Maker T/G : Hitachi REHEATER 0속초 Flow rate : 420t/h 韓国 Burners Main Temp. : 541deg-C Young Dong #1 ECONOMISER steam Pressure : 12.85MPa n 안동 대전이 Burner Circular type x 16 전주 type Bent type x 12 포함 Butne ●물산 광주 Tube type × 6 Mill 부산 (Standby x 1) type AIR HEATER Fuel Anthracite(FR*=14) 福岡 제준 Efficiency 36% 200 km 100 マイル * Fuel Ratio= Fixed Carbon/Volatile

IR ODÇƏN 🌕

DOOSAN

KIMM

Project Outline

Organization

Scope of Basic Design

2. What We Have Done

Feasibility Study Result (Boiler)

Feasibility Cases				
	Case 1	Case 2	Case 3-1	Case 3-2
	Retrofit	Retrofit	Retrofit	Brownfield
Boiler	Existing Downshot	Existing Downshot New Boiler		v Boiler
Firing System	Downshot-Fired Circular Burners	Wall-Fired Circular Burners & New Windbox		
Mill & PF Ducting		Vertical Mill & New PF Piping, New PAF		
Boiler Plant Layout	Maximum use of boiler New PAH & refurbished	r / boiler island components & layout New		
Boilerhouse Primary Steelwork		Existing New		

The Retrofit Case was selected to apply for verified Oxyfuel technology maximizing use of exiting boiler components & layout

Feasibility Study		Foosibility Study		ibility Study		Emissions			Capital	Total Expected	
	T easibility Study		Capacity ¹⁾ (t/h)	Efficiency (% GCV)	NOx (mg/MJ)	SOx (mg/MJ)	Dust (g/Nm ³)	(MUSD)	Period (months)		
	Case 0	Air- firing	372 t/h	82.0 %	tbc	305	19.4	-	-		
		Air- firing	372 t/h	83.3 %	Approx 120	340	2.9	27.0	26		
	Case I	Oxy- firing	297 t/h	86.9%	Approx 60	650 ²⁾ 120 ³⁾	3.7	27.0	20		
		Air- firing	372 t/h	83.4 %	90	340	2.9	07.7	20		
	Case 2	Oxy- firing	297 t/h	87.1 %	45	650 ²⁾ 120 ³⁾	3.7	21.1	20		
	Case 3-1	Air- firing	372 t/h	83.6 %	90	340	2.9	77.4	36		
	(3-2)	Oxy- firing	297 t/h	87.3 %	45	650 ²⁾ 120 ³⁾	3.7	(87.2)	(44)		

Notes :

1) Boiler Capacity was considered based on 372 t/h equivalent to 125 MWe gross for Air Firing and 297 t/h equivalent to 100 MWe gross for Oxy firing condition.

2) Uncontrolled SOx

3) In-furnace De-SOx (as proposed by KIMM)

4) Capital Cost was estimated as a results of Feasibility Study and is not guaranteed.

Thermal Performance Modeling & Prediction

 Boiler plant designed for air-firing can operate under oxyfuel firing conditions, without significant

heating surface pressure part modifications

 Low utilisation of lower furnace leading to high SH spray demand & high carbon-in-ash (short residence times).

Furnace

- Radiant heat transfer dominates
- Radiant heat transfer dominated by particulate material
- Impact of non-luminous gases radiation (CO2, H2O) small compared to particles
- Impact of oxyfuel compared to air is therefore expected to be small Convective pass
- Heat transfer based on gas properties, velocities
- Radiation has diminishing importance
- Performance is predictable using conventional design rules
- Minimal thermal impact of oxyfuel verified by pilot scale testing

Mechanical Design

Retrofitted Boiler : WALL FIRED			
Detailed Review:-	(to accommodate new burner loads)		
Sling Tubes*	New, Rows 'A' & 'D' material upgrade		
Furnace Wall Tubes 🧿	No strength mods other than redundant tubeset replacement		
Framing & 3 Attachments	New replacement 'hot' buck stay at one level		
New Scope:-			
Burner Windbox	New		
Burners & Burner 5 Openings	New OxyCoal™ Burner		
Arch Pressure Parts 6	New (ribbed bore tube or alternative tube)		
Seal Casing	New		
Overturning Posts & Buckstays	New (or strengthened)		
Pressure Part Attachments	New		
Supports*	New, Row 'B' sling rod material upgrade		

*Sling row definition - Refer Drg No.: KU1-122-601 Boiler Loading Plan

Conceptual GA

Environment Control System

What We Have Done

Environment Control System

1) Design Condition

	Туре	Specification	Remarks
De-SOx	In-Furnace De-Sox(Dry Type)	limestone, 1t/hr, dry flue gas spray	New Build
Dry EP	Dry, Full Sealed	510,000m3/hr, Temp. 210°C, Eff. 99.96%	New Build
FGC	Spray	200,000m3/hr, Temp.120°C/30°C	Incl. cooling tower
Wet EP	Water Film	200,000m3/hr, Temp.30°C, Eff. 95%	New Build
FGD	Wet Type FGD	200,000m3/hr, Temp. 30°C, Eff. 98%	Reuse
Aux. filter	Filter	10,000m3/hr, Temp. 30°C, Eff. 95%	New Build

2) Capital Cos	t		(MUSD)
	CASE 1	CASE 2	CASE 3
De-SOx	1.5	N/A	1.5
Dry EP	5.0	5.0	5.0
FGC	1.2	1.2	1.2
Wet EP	2.0	N/A	N/A
FGD	N/A	5.0	5.0
Aux. filter	N/A	0.3	0.3
Total	9.7	11.5	13.0
	·······		

ASU & CPU

	Basic Design Conditions for ASU	
ASU Type	ASU Type Double Column	
O2 Purity	O2 Purity 95%	
Oxy mode	GO2 Producing, 20,000 Nm3/h LO2 Back-up, 40,000 Nm3/h	1/3 Vs Full Load Demand
Air Mode	20,000 Nm3/h	LO2
Capacity of LO2 Tank	Capacity of 8,000 m3	
Time for LO2 production	11 ~ 12 days	For During Air Mode

	Basic Design Conditions for CPU	
CPU Type	Cryogenic	
Capacity	10% Vs Full Load Demand	
CO2 Phase	GCO2, LCO2	Depend on Operation Mode

Process Diagram of Oxy-PC Power Plant

What We Have Done

Arrangement Plan of Main Facilities

What We Have Done

순산소연소연구단 **OXY-FUEL COMBUSTION R&D ORGANIZATION**

General Arrangement

What We Have Done

Boiler Island

ASU & CPU

Schematic Diagram of Test Bed

- > Oxy-PC Test Bed 100kg/hr(Coal),(0.7MWth)
- > Dual Mode Operation (Air & Oxy Mode)

KIMN

Test Bed – Combustion System

Test Bed - Environment Control System

What We Have Done

Developing of Dynamic Engineering Simulator

What We Have Done

Developing of Dynamic Engineering Simulator

Phase 1) YEONGDONG Unit 1 Engineering Simulator

Developing YEONGDONG Unit 1

Engineering Simulator

- Performance Verification of YEONGDONG
 - Unit 1 Engineering Simulator

Phase 2) Oxy-PC Dynamic Engineering Simulator

- Modifying YEONGDONG Unit 1 Engineering Simulator to Oxy-PC Dynamic Engineering Simulator
- Developing Boiler and Air/Gas System Model for Oxy-PC Dynamic Engineering Simulator
- Developing ASU and CPU System Model
- Verifying Boiler and Air/Gas System Control Logic

승산소연소연구단

OXY-FUEL COMBUSTION

R&D ORGANIZATION

Developing of Dynamic Engineering Simulator

What We Have Done

Developing of Process Analysis Tool

SteamGen Expert Plus ess Simulation Program m **************** -Multizone Furnace Module Dialog ? Solid Fuel Dialog Middleson-Fassie Feralt Disks Furnace l Init m Units... Name Mass Fraction of Solid Zone 15 26 0.0 Name Depth (X) Zone 14 27.8 0.537829 Height [Y] unGen Experi Nelbaren Mass Flow 38.55 Zone 13 ton/h Zone 12 Zone 11 Zone 10 Zone 9 Width (Z) 12.8 0.0378753 feat Loss Temperature 5800 Avra (M) 17295.6 HHV kcal/kg Point 1 (X) 11011 0.4319021 0.55 Total Heat Long 4.79E+01 1000 1010 Zone Zone Zone Zone Zone Zone Zone Zone 0.143926 Point 2 (X) 41 Heat Loss To Exit Heat Loss To Enclosure Wall Heat Loss To SH 1453.28 -627 1545.16 0.358754_0.14 LHV 5511.31 kcal/kg SE+0 23E+00 51E+00 0.355483 0.33 0.432797 0.35 Point 3 (Y) 3.8 0.00757506 Heat of Formation 499.801 Heat Loss To Waterwall Stream 1545 68 0.439122 0.14 kcal/kg 13E+08 395+07 19.8 1432 65 1717 65 1773 21 1773 21 0.334045 0.34 0.334045 0.34 0.334037 0.34 0.334037 0.34 0.334137 0.34 Point 4 (Y) leart Loss To Water Str ART 1 E 64E+03 595+07 740-+07 0.08 0.678242 kcal/kg Point 5 (X) Sensible Heat 377+07 Point 5 (Y) 797.407 1113 64 0.4-0500 0.14 0.4-7050 0.14 0.0265127 Ash. 499.122 1115 01 Total Enthaloy kcal/ko 12 No. of Burner Zones 0.166282 Flue Gas Exit Moist. Heat Capacity 1544.56 J/kaK No. of Nose Zones Rear Wall Side C Top of Furnace No. of Upper Zones Sum + Composition Basis Specify For Each Zone Total No. of Zones LUNC Volatile 0.4 Top of Zone (Y) ● Ast'd ○ Dry ○ Daf hopper) 🔥 Number of Cells In X 20 Zone: 2 (burner) Zone: 3 (burner) Number of Cells In Y 49 Zone: 4 (burner) Normalize Number of Cells Number of Cells In Z 20 Zone: 5 (burner) Zone: 6 (burner) Use Dulong's Update Y 4 Total Number of Cells 19600 Continue Set SH Set Walls Export Grid Cancel Cancel OK KEPRI Set PSD OK Set Streams. View Results.

26

OXY-FUEL COMBUSTION R&D ORGANIZATION

Developing of Process Analysis Tool

What We Have Done

3. What We Will Do

KOCRO Plan

Total Capital Investment : 130M USD

Cost Share

- Power Company : KEPCO, KOSEP
- Private Sector : Doosan, Daesung, KC Cottrell
- Korean Government

Preliminary Feasibility Study

- Every public project with over 50M USD MUST pass the preliminary feasibility study by the Ministry of Treasury.
- We will enter the 2012 PFS to get the 2013 budget allocation fr om the National Assembly

OXY-FUEL COMBUSTION

R&D ORGANIZATION

Dual Combustion Operation

- Expect to have 100day/year Oxy-Fuel Mode Operation
- Minimum 3 years operation
- Can be extended if additional needs (testing new technologies) arise

Operation Cost

- Need to compensate the loss of revenue by Oxy-Fuel Operation
- 10M USD per year

Potential Compensation Methods

- RPS
- CTS
- Adjustment of Power Whole Sale Price

Technical Front : Sailing Smooth

- Ready to complete the Demonstration Plant Construction by 2015
- Dual Combustion Mode Allows Us A Very Flexible Operation
 - Test Different Technological Options
 - Can Go Back to Air-Firing Mode until the Technical Problems are Fixed if they arise
- There is a Window of Opportunity to Deploy Brand-New Commercial Scale Oxy-Fuel Power Plant in Korea After 2020

Political Front : Foggy

- Much of the Driving Force for Global Climate Change Mitigation Has Been Evaporated
- We Do Not Know Whether the Korean Government Is Willing to Move Ahead in This Circumstance.

Storage

- Lagging behind the Capture Technology Development
- Yet to Hear from the National Geological Institute and Korea National Oil Corporation about the Commercial Scale Off-Shore CO2 Storage Sites

