Evaluation of Process Improvements in Pilot Scale – Activities Under the EU CESAR Project

Jacob Nygaard Knudsen, DONG Energy
CESAR Project Consortium

CESAR: CO₂ Enhanced Separation And Recovery

- 3-year EU project (2008 – 2011) in the 7th Framework Programme
- Aim: To reduce the cost of CO₂ post-combustion capture

R&D
- IFP (FR)
- TNO (NL)
- SINTEF (NO)
- NTNU (NO)
- POLYMEN (FR)
- CNRS (FR)
- U. KAIERSLAUTERN (DE)

Oil & Gas
- STATOILHYDRO (NO)
- GDF (FR)

Power Companies
- DONG Energy (DK)
- VATTENFALL (SE/DK)
- E.ON (DE/UK)
- ELECTRABEL (BE)
- RWE (DE/UK)
- PPC (GR)
- POWERGEN (UK)

Manufacturers
- ALSTOM POWER (SE)
- DOOSAN BABCOCK (UK)
- SIEMENS (DE)
- BASF (DE)

Coordinator: TNO
Outline CESAR Project

WP1
Advanced separation processes
- Solvent selection
- Novel solvents
- High flux membrane contactors

WP2
Process modeling & Integration
- Development of process models
- Integration studies
- European benchmark task force

WP3
Solvent process validation
- Qualification of solvents
- Solvent process validation in Esbjerg pilot plant
- Environmental impact
CESAR Objectives of Pilot Plant Testing in Esbjerg

- Evaluate the potential of advanced absorption/desorption process configurations in pilot-scale
- Determine the performance of novel solvents in realistic operation conditions for future full-scale application in coal-fired power plants
- Measure energy requirement and temperature levels for regeneration of the novel solvents
- Monitor actual solvent degradation, losses and by-products, corrosion, fouling and emissions for novel solvents
Esbjerg Power Station (ESV)

Esbjerg Power Station
- 400 MWₑ pulverized bituminous coal
- High dust SCR deNOₓ plant
- 3 zones cold-sided ESP
- Wet limestone FGD (saleable gypsum)
The CO₂ Capture Pilot Plant at Esbjerg Power Plant

Pilot Plant Specifications

- Operates on a slip stream of flue gas taken directly after the wet FGD
- Flue gas flow: 5000 Nm³/h (0.5% of 400 MWₑ)
- CO₂ capture capacity: 1000 kg/h
- Cleaning efficiency: 90%
Esbjerg Pilot Plant Flow Diagram

- Bubble cap polisher
- Fresh water
- Absorber inter-cooling
- Flue gas from power plant
- Treated flue gas
- CO₂ Out
- Cooling water circuit
- Reboiler
- MEA/MEA heat exchanger
- Absorber inter-cooling
- Expansion of cross flow heat exchanger
- Installation of vapour recompression
- Condensate
- Steam
- Wash section
- Rich MEA
- Lean MEA
- Mechanical filters
- Revamping of absorber with structured packing
CESAR Pilot Plant Modifications: Inter-cooler & Flash Vessel

Absorber inter-cooler skid

Flash vessel for vapour recompression
Pilot Plant Operation History and Outlook

Four test campaigns have been conducted during CASTOR and three more are scheduled for the CESAR project:

- 1000 hours using standard solvent "30%-wt. MEA" (Jan – Mar 2006)
- 1000 hours using standard solvent "30%-wt. MEA" (Dec 2006 – Feb 2007)
- 1000 hours using novel solvent "CASTOR 1" (April – June 2007)
- 1000 hours using novel solvent "CASTOR 2" (Sep – Dec 2007)
- >1000 hours using standard solvent "30%-wt. MEA" (Mar 2009 – July 2009) in modified pilot plant
- >1000 hours using novel solvent "CESAR 1" (Oct 2009 – Dec 2009) in modified pilot plant
- >1000 hours using novel solvent "CESAR 2" (Feb 2010 – Jun 2010) in modified pilot plant
Outline of CESAR MEA Test Campaign

- **Test 1 – Parameter variation**
 a) Optimisation of solvent flow rate (at 90% capture)
 b) Effect of absorber inter-cooling
 c) Effect of vapour re-compression
 d) Variation of CO₂ capture percentage
 e) Variation of stripper pressure

- **Test 2 – 500 hours of continuous operation**
 - Operation at ”optimised” conditions and achieving 90% CO₂ capture (on average)
 - Quantification of solvent consumption and degradation
 - Characterisation of corrosion behaviour

- **Test 3 – Miscellaneous tests**
 - Transient test & load following capability
 - Emission measurements
 - Etc.
Optimisation of Absorber L/G with Improved Cross Flow HX

Specific steam consumption at stripper pressure 0.85 bar$_g$, flue gas flow \approx5000 Nm3/h and \approx90 % CO$_2$ recovery

CASTOR: $\Delta T = 7.1$-8.0°C

$\Delta T = 4.0$-4.3°C
Effect of Process Modifications: Absorber Inter-cooling (1/2)

Flue gas flow ≈5000 Nm³/h, L/G ≈3 kg/kg, Stripper pressure =0.85 barg, CO₂ capture ≈90%

Steam consump. CO₂ recovery (%)

Abs. temperature (°C) vs Packing height (m)

Flue gas 48°C, Solvent 40°C
Effect of Process Modifications: Absorber Inter-cooling (2/2)

Flue gas flow ≈ 5000 Nm3/h, L/G ≈ 3 kg/kg, Stripper pressure = 0.85 barg, CO$_2$ capture ≈ 90%

![Graph showing the effect of inter-cooler temperature on rich loading and temperature rich MEA.](image-url)

- Rich loading
- Temperature rich MEA (°C)

![Graph showing the effect of inter-cooler temperature on absorber pressure drop.](image-url)

- Absorber pressure drop (mm H$_2$O)

Inter-cooler temperature (°C)

20 30 40 50 60

Rich loading (mol CO$_2$/mol MEA)

0.40 0.45 0.50 0.55 0.60

Temperature rich MEA (°C)

20 30 40 50 60

Absorber pressure drop (mm H$_2$O)

200 220 240 260 280 300
Effect of Process Modifications: Lean Vapour Re-compression

Flue gas flow ≈ 5000 Nm³/h, L/G ≈ 3 kg/kg, Stripper pressure = 0.85 barg, CO₂ capture ≈ 90%, no inter-cooling

![Graph showing the relationship between Flash pressure (barg) and steam and power consumption.](image)
CESAR MEA Test: 500 Hours of Continuous Operation

L/G ≈ 3 kg/kg, stripper pressure 0.85 bar, with inter-cooling and vapour re-compression

Average steam consumption: ≈ 3.07 GJ/ton CO₂ (± 24 kWh/ton CO₂) Average CO₂ capture: 90% (Result from CASTOR: ≈ 3.7 GJ/ton CO₂)
Influence of Reboiler Steam Input

Flue gas flow ≈ 5000 Nm3/h, L/G ≈ 3 kg/kg, stripper pressure 0.85 bar$_g$

with inter-cooling and vapour re-compression

$$\text{Steam consump.}$$

$$\text{CO}_2\text{ recovery}$$

$$\text{Reboiler steam input (kg/h)}$$
Conclusions

Several process upgrades have been introduced at the Esbjerg CO₂ capture pilot plant. A benchmark campaign using 30% MEA has among others indicated that:

- Reducing the ΔT of the solvent cross flow heat exchanger from ≈7.5 to 4.5°C leads only to minor saving in reboiler steam consumption (≈ 0.1 GJ/ton CO₂), however, it allows for lower reboiler temperatures (i.e. higher L/G) at reduced penalty
- Inter-cooling seems to have only marginal effect on reboiler steam consumption with MEA, however, as a co-benefit the absorber ΔP is reduced
- Vapour re-compression may lower reboiler steam consumption substantially (3.6 to 2.8 GJ/ton) on account on increased power consumption. A full cost benefit analysis is required to determine the true benefits

Acknowledgements

The pilot plant in Esbjerg is sponsored by the CESAR partners, the European Commission through the CESAR project, and the CLEO project sponsors: Aker Clean Carbon, EDF, EnBW, Enel & Hitachi Power Europe