Effects of Heterogeneity on CO$_2$ Storage in a Saline Reservoir: A Case Study from Nagaoka Pilot CCS Site in Japan

T. Nakajima, T. Ito, S. Chiyonobu, and Z. Xue
Research Institute of Innovative Technology for the Earth (RITE)

IEAGHG Monitoring and Modelling Network Combined Meeting
2014, Morgantown WV
6 August, 2014
Outline

1. Background
2. Nagaoka CO$_2$ injection site
 • Overview
 • Monitoring activities
3. Modeling of Nagaoka site
 • 3D seismic survey and framework modeling
 • Logging data and property modeling
4. Numerical simulation
 • History matched results
5. Summary
Background

- Detailed site characterization is critical for successful geological storage of CO$_2$.
- Heterogeneity of sedimentary facies has strong effects on migration of CO$_2$ (e.g. Sato et al., 2011).
- Injection and monitoring data can be used for the site characterization with heterogeneity (e.g. Doughty et al., 2008).
- Nagaoka pilot-scale CO$_2$ injection site can be used as a case study of the geological modeling with heterogeneity.

- Build a Nagaoka geological model with heterogeneity
- Compare the simulation results with the monitoring data
Nagaoka CO₂ injection site

Well configuration at the reservoir level

- OB-3: 120m
- OB-4: 60m
- OB-2: 40m
- IW-1: Injection site

Formation dip: 15°

- Injection Period: 2003/7/7 ~ 2005/1/11
- Injected amount: 10,400 ton
- Injection rate: 20 ~ 40 ton/day

- Injection layer (~ 1100m)
 - Thickness: 12m
 - Porosity: 23% (ave.)
 - Permeability: 7mD (ave.)
 - Temp./Press.: 48°C / 11MPa
Monitoring programs at Nagaoka site

Pressure measurements

Time-lapse well logging > CO₂ Saturation

Cross well tomography > Plume
Results of a 3D seismic survey

Seismic image (NW-SE direction)

-→ anticline structure

Feature along NS direc.

<- depositional process

Framework modeling

Time slice

(~1000ms)

1.5km
Log data and up-scaling for modeling

Permeability logging at 4 boreholes

Layer continuity, but with heterogeneity.

Extrapolate properties to the framework model
⇒ Random Function Gaussian Simulation (RFGS)
Porosity, Permeability distribution

Porosity

Permeability

Sand

Shale
Capillary pressure, relative permeability functions

- Obtained from mercury injection tests
- Low GR: Sand, High GR: Shale

van Genuchten model (no hysteresis)
Summary of a Nagaoka model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value / Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of layers (Z direc.)</td>
<td>14</td>
</tr>
<tr>
<td>Mesh size (Horizontal direc.)</td>
<td>5m, 10m, 50m</td>
</tr>
<tr>
<td>Active cells</td>
<td>58,856</td>
</tr>
<tr>
<td>Permeability Porosity distribution</td>
<td>Calculated by RFGS</td>
</tr>
<tr>
<td>Anisotropy in the permeability</td>
<td>$K_x = K_y \times 0.4$, $K_y = K_y$, $K_z = K_y \times 0.1$</td>
</tr>
<tr>
<td>Capillary pressure function</td>
<td>From mercury injection test</td>
</tr>
<tr>
<td>Relative permeability function</td>
<td>van Genuchten model</td>
</tr>
<tr>
<td>Simulator</td>
<td>TOUGH2+ECO2N</td>
</tr>
</tbody>
</table>
Pressure and CO$_2$ saturation (results 1)

Pressure at IW-1 and OB-4

CO$_2$ saturation at observation wells
Pressure and CO$_2$ saturation
(results 2: different sand/shale distribution)

Pressure at IW-1 and OB-4

CO$_2$ saturation at the observation wells

Breakthrough time was delayed at OB2.
Results of the simulation (CO$_2$ distribution)

1.6yr (stop injection)
3yr
6yr

CO$_2$ distribution in the most permeable zone (top view)

CO$_2$ plume migrates to up-dip direction during the post injection phase.
Comparison to the tomography results

Cross-well tomography between OB2 and OB3 (CO₂ injection stopped)

Simulation results (CO₂ saturation)
Summary

- A geological model at the Nagaoka site was constructed.
 - Heterogeneity by RFGS, Facies dependent properties.
- Behavior of the CO$_2$ plume was simulated using the constructed reservoir model.
 - History matching
- The results of the numerical simulation was consistent with the monitoring observations.

Future Work

- Obtain the best matched parameters and improve the geological model of Nagaoka site.
Acknowledgements

• This work was supported by Ministry of Economy, Trade and Industry (METI) of Japan under the research contrast “Development of Safety Assessment Technology for Carbone Dioxide Capture and Storage”.

• We thank BRGM which allows us to use Tough2lBox (Audigen et al., 2011) for constructing MESH files of TOUGH2.

• We thank staff of ENAA, INPEX, GSC, and RITE involved in Nagaoka pilot-scale CO₂ injection project.
Pressure and \(\text{CO}_2 \) saturation (results 3: horizontally isotropic)

Pressure at IW-1 and OB-4

\(\text{CO}_2 \) saturation at the observation wells
Heterogeneity related to sandy/shaly rock