[2016 IEAGHG CCS Summer School]

Electricity System Modelling (Generation)

Doug Opseth, Director
Supply Planning and Integration
July 17, 2017

What we'll talk about today

- Why do we need to plan?
- What are the challenges of planning?
- How do we plan now?
- How will we plan in the future?
- Your questions

Why do we plan?

- To keep the lights on
- To insure reliability
- To manage risk (both from a supply and financial perspective)

OUR KEY CHALLENGES

- Growing demand for power in Saskatchewan
- Aging power system/infrastructure
- Regulations eliminate conventional coal (without carbon capture) and will restrict emissions on natural gas going forward
- Integrating more renewable (but intermittent) generation sources
- Managing Rates

THE CHALLENGE

THE CHALLENGE

THE CHALLENGE

Considerations and criteria

How we "close the gaps" is determined by assessing a number of variables, including:

- System reliability and integrity
- Regulatory requirements (e.g. carbon penalties)
- Fuel price and availability
- Technology limitations and system integration
- Levelized cost/MWh
- Diversification (managing risk)
- Public acceptance

Option	Load Following	First Year Available	*Est. cost range (\$/MWh)	Key risks
Demand Side Management	Varies	2017	5-200	- changes in consumer market conditions, behaviour, regulations and codes
Natural gas	Yes	2019	60-85	- price flux; social licence; emissions
CCS	No	2023	110-150	- costs dependent on sale of CO ₂ ; emissions regs;
Hydro (SK)	Yes	2021	125-180	- high capital costs; limited resource
Imports (hydro)	No	2017	100-125	- limited availability; social licence
Nuclear (SMRs)	No	2030	115-160	- high capital costs; new regulatory env. in SK; social licence
Flare gas	No	2018	95-125	- limited resource
Wind	No	2020	70-100	- grid integration estimated at \$13/MWh
Solar	No	2018	120-180	- grid integration estimated at \$22/MWh
Biomass	No	2018	169-195	- limited resource
Geothermal	No	2020	150-195	- limited resource

^{*}based on 2023 in-service dates (SMRs based on 2030) in 2016 dollars. *Estimated and subject to change.

As of December 2016

Primary System modelling tools Today

- PROMOD (Production Modelling)
 - Simulates the operation of the system
- STRATEGIST
 - Long-term planning; helps determine cost and timing of potential scenarios

What is an Integrated Resource Plan?

A 20-year look ahead that evaluates reliable, cost-effective resource options (supply-side and demand-side) for meeting future electricity demand; updated every 2 to 3 years.

The 2017 IRP strives to accomplish the following:

Ensure reliability for all stakeholders

Evaluate all options fairly and consistently

Minimize costs to all stakeholders

Create a flexible plan that allows for uncertainty

Reduce CO2 emissions from power generation

The IRP also aspires to include stakeholders

INTEGRATED RESOURCE PLAN

What has been done differently:

- Utilizes a scenario analysis approach
- Scorecards illustrate trade-offs between resource strategies
- Evaluates Demand Side Management as a resource option
- Incorporates aspects of Generation, Transmission, Distribution planning
- Strives to be the single document needed to understand SaskPower's energy strategy and how it will be delivered

Outside of IRP Scope:

- SaskPower future business model
- Rate structure/design
- Business support resources and systems

THE IRP PROCESS

CHALLENGES WITH RENEWABLES

- Renewables are intermittent resources (sources of energy that are not continuously available due to factors outside the direct control of the operator).
- Not being able to directly control the fuel source corresponds to not being able to directly control the output (dispatch level).
- Renewables add another factor that system operators need to account for in balancing the system (on top of variations already cause by load, generation, and transmission).

Why is intermittent generation a Concern?

Why a Concern? (continued)

Why a Concern? (continued)

New Initiatives

Renewables Integration Study

Gain a better understanding and quantify:

- The value wind & solar bring to the system (avoided cost, capacity value, ancillary services, etc.)
- Changes expected on existing generation fleet (cycling, ramping, commitment, reserves, etc.)
- Regulating reserve requirements to manage variability
- Improved model fidelity for system planning/operations

New Modelling Tools

Exploring planning/operational modelling tools that:

- Produce simulations covering minutes to years for:
 - production cost
 - resource expansion
 - reliability
- Incorporate cascading hydro system optimization, hydro thermal coordination, and stochastic simulations.
- Facilitate detailed model components for hydro systems, reserves, thermal units, integer optimization, etc.
- Integrated tools that cover multiple analyses such as:
 - Forecast errors
 - Optimal expansion
 - Renewable forecast impacts
 - Emissions restrictions

PLEXOS

PLEXOS® Integrated Energy Model

- A simulation software that uses mathematical optimization combined with the latest data handling, visualization, and distributed computing methods.
- Provides a high-performance, robust simulation system for electric power, water and gas.
- Meets the demands of energy market participants, system planners, investors, regulators, consultants and analysts alike with a comprehensive range of features
- Seamlessly integrates electric, water, gas and heat production, transportation and demand over simulated timeframes from minutes to 10's of years,
- All delivered through a common simulation engine with easy-to-use interface and integrated data platform.

Outcomes and Considerations

Modelling will give you outcomes but can't make decisions for us!

- Gas portfolio lowest cost but costs go higher with carbon pricing.
- SMR portfolio lowest emissions <u>but</u> first-mover SMR projects must materialize to prevent risk.
- CCS with enhanced capture technology is higher-cost but extends life of coal assets, industry and jobs.
- Imports scenario has low emissions <u>but</u> relies on **out- of-province** decisions and jobs.
- Stronger renewables scenario = increased costs to customers.
- What pathway do we want to take?

Decision Drivers	Metrics
Carbon pricing/penalties	Emissions profile
Access to capital	Levelized cost/MWh
Natural gas price & volatility	Risk mitigation
Technology limitations	Operability
Public acceptance	Social licence/corporate reputation
Ability to mitigate risk	Supply mix diversification

Questions & Discussion

