Investigating the performance of multifunctional materials in methane sorption enhanced reforming

Christina Martavaltzi, Sofia Aggeli, Angeliki Lemonidou

Department of Chemical Engineering
Aristotle University of Thessaloniki
Thessaloniki, Greece

Alkmaar, September 16, 2010
Hydrogen production

- Worldwide demand for hydrogen (2011) > 100,000 Nm³/h
- Hydrogen production contributes significantly to CO₂ emissions (High energy demand, byproduct)
Industrial process

\[\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow \text{CO} + 3\text{H}_2 + 206 \text{ kJ/mol} \quad \text{steam reforming} \]

\[\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2 - 41\text{kJ/mol} \quad \text{water gas shift} \]
Industrial process

\[
\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \quad +206 \text{ kJ/mol} \quad \text{Steam reforming}
\]

\[
\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad -41\text{ kJ/mol} \quad \text{water gas shift}
\]

- T>800°C
- Necessity for external heating
- Heat losses
- High energy demand for compression

High CO\textsubscript{2} emissions
Sorption enhanced reforming

$$\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \rightarrow 206 \text{ kJ/mol}$$

$$\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \rightarrow -41\text{ kJ/mol}$$

$$\text{CO}_2 + \text{CaO} \rightarrow \text{CaCO}_3 \rightarrow -178 \text{ kJ/mol}$$

Natural gas steam

reformer

HT-WGS

LT-WGS

CH4, H2
CO, CO2

PSA

H2
Sorption enhanced reforming, SER

Loading the reformer tubes with a mixture of catalyst + sorbent

- In-situ CO₂ capture \rightarrow separation train much simpler
- High hydrogen yield
- Lower temperature in the reformer
- Direct heat transfer in the reformer via carbonation reaction \rightarrow reduction in heat losses

Carbon Footprint of hydrogen production much lower
Thermodynamics of SER product profiles vs temperature

- Window of operation: 500 – 650 °C

Martavaltzi et al., Energy Fuels 2010, 24, 2589
Sorption enhanced reforming over CaO-Ca$_{12}$Al$_{14}$O$_{33}$ (85/15 wt)

- Effective CO$_2$ capture
- > 93% hydrogen concentration

Commercial Ni-based reforming catalyst
CaO-Ca_{12}Al_{14}O_{33} stability-reforming conditions

- Satisfactory stability
 ~ 15% loss in sorption capacity after 60h testing

Martavaltzi et al, IECR (2010)
Challenge: Combine in one single pellet the functions of catalysis + sorption

- Metallic Ni
- Dissociative adsorption of CH$_4$
- Carrier with high thermal and mechanical strength Ca$_{12}$Al$_{14}$O$_{33}$
- Alkaline earth oxides (CaO) for coke prevention

NiO-CaO-Ca$_{12}$Al$_{14}$O$_{33}$
Synthesis & composition of materials

Aqueous solution
Al(NO₃)₃, Ni(NO₃)₂

Aqueous suspension CaO

Stirring

- Drying 110°C for 18h
- Calcination at 500°C for 3h
- Water addition
- Calcination 900°C for 1hr

<table>
<thead>
<tr>
<th>Sample</th>
<th>Nominal composition, wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca:Al:Ni</td>
</tr>
<tr>
<td>CANi8</td>
<td>57:5:8</td>
</tr>
<tr>
<td>CANi11</td>
<td>55:4:11</td>
</tr>
<tr>
<td>CANi16</td>
<td>53:3:16</td>
</tr>
<tr>
<td>CANi20</td>
<td>52:1:20</td>
</tr>
</tbody>
</table>
Characterization

A: $\text{Ca}_{12}\text{Al}_{14}\text{O}_{33}$ B: CaO, C: NiO

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area, m²/g</th>
<th>Crystallite size NiO, nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANi8</td>
<td>11.0</td>
<td>25.4</td>
</tr>
<tr>
<td>CANi11</td>
<td>10.0</td>
<td>23.7</td>
</tr>
<tr>
<td>CANi16</td>
<td>8.84</td>
<td>28.0</td>
</tr>
<tr>
<td>CANi20</td>
<td>9.5</td>
<td>37.7</td>
</tr>
</tbody>
</table>
NiO crystallite size around 30nm
Weak interaction of NiO and CaO – inhomogeneous distribution of NiO
Evaluation of sorption capacity
multiple cycles in TGA

- High stability in multiple cycles
- Optimum performance CANi16
 31% sorption capacity
 no deactivation

NiO-CaO-Ca_{12}Al_{14}O_{33}

Sorption: 690°C, 15% CO_2, 30 min
Desorption: 850°C, 100% N_2, 10 min
45 cycles, TGA

Sorption Enhanced Reforming Conditions

- Fixed Bed Reactor (OD:18mm)
- NiO-CaO-Ca_{12}Al_{14}O_{33}: 5gr
- Reduction Conditions (1hr, 30% H_{2}, 850°C)
- H_{2}O/CH_{4} = 3.4
- Reforming-Sorption Temperature: 650°C
- Desorption Temperature: 850°C
SER over 16%Ni -CaO-Ca$_{12}$Al$_{14}$O$_{33}$

Results

- 80% methane conversion
- 90% H$_2$, 2.8% CO$_2$, 2% CO

Satisfactory capturing capacity (33%)

Medium reforming activity compared to commercial Ni catalysts
Sorption enhanced reforming of methane

- Reforming activity increasing with Ni loading up to 16%
- Higher Ni loadings (20%)
 → low dispersion of active phase
 →→ low conversion
Gradual loss in the reforming activity was observed in consecutive cycles of reforming-sorption and regeneration-desorption

Possible reasons for this

1. Gradual saturation of CaO
2. Coke formation
3. Oxidation of metallic Ni
4. Sintering
Conclusions

Multifunctional materials with CO$_2$ capturing function (70% CaO) and reforming activity (Ni 8-25%) were synthesized and tested.

CaO-Ca$_{12}$Al$_{14}$O$_{33}$ serves as effective support for metallic Ni reforming active sites and as a CO$_2$ sorbent with high sorption capacity.

Satisfactory sorption capacity around 30% (based on total sorbent mass) is attained at 690°C in a stream of 15% CO$_2$. Minor losses in sorption capacity in 45 cycles of sorption-desorption.

Testing under methane reforming conditions demonstrated that hybrid materials effectively capture CO$_2$ formed on the active catalytic sites. Optimum catalytic performance attained with the 16%Ni sample.

Gradual loss of the reforming activity was observed in consecutive cycles of testing.
Acknowledgements

Aristotle University of Thessaloniki
Emma Korkakaki
Eleftheria Pampaka
Tilemachos Pefkos
Dimitris Sergiadis

Chemical Process Engineering Research Institute (CERTH/CPERI)
Dr Andreas Delimitis
Olga Orfanou