Experimental Characterization of Reactor Operation for the Calcium Looping CO$_2$ Capture process

A. Charitosa, C. Hawthornea, G. Kopanakisa, M. Ziebaa, G. Scheffknechta, N. Rodríguezb, J.C. Abanadesb

aInstitute of Combustion and Power Plant Technology (IFK), University of Stuttgart
bInstituto Nacional del Carbón (CSIC), Oviedo
Contents

1. The 10 kW_{th} Dual Fluidized Bed Calcium Looping facility

2. Experimental parameters

3. **Results**: Process Characterization

 a) Chemical sorbent degradation

 b) Regenerator performance

 c) Carbonator performance

4. Conclusions
1. The 10 kW\textsubscript{th} Calcium Looping DFB facility

-
 - C:\\ F B B R e g e n e r a t o r \ (> 900 \, ^{\circ}C) \\
 - (3.2 \text{ m, } \phi 114 \text{ mm})
 - \text{BaCO}_3 \rightarrow \text{BaO} + \text{CO}_2 \\
 - \Delta H = +178 \text{ kJ/mol}

-
 - \text{CFB Carbonator } 600-700 \, ^{\circ}C \\
 - (12.4 \text{ m, } \phi 71 \text{ mm})
 - \text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \\
 - \Delta H = -178 \text{ kJ/mol}

-
 - \text{C-fuel/ O}_2 \text{ & CO}_2

-
 - \text{Power Plant flue gas (10%-15% vol. CO}_2\)
2. Experimental parameters

Regenerator
1. Temperature: 850 - 900°C
2. **O₂** inlet concentration: 21 - 40 %
3. **Partial CO₂** pressure: < 0.3 bar
 Sorbent Pre-calcination: For 1h at 900 °C

Carbonator
1. Temperature: 630-700 °C
2. **CO₂** Inlet concentration: 11-15%
3. Calcium looping ratio (F\(_{Ca}\)/F\(_{CO₂}\)): 3-23
4. **Carbonator contacting mode:**
 - Circulating Fluidized Bed (CFB)
 - Velocity: 4-6 m/s
 - Bubbling Fluidized Bed (BFB)
 - Velocity: 0.5-1.2 m/s
5. **Two limestones:** Swabian Alb A & B
6. **Two PSDs:** 0.1-0.3 mm & 0.3-0.6 mm
7. **Simplifications:** No **SO₂**, steam and sorbent make-up flow addition
3. Process Characterization
 a. Chemical sorbent degradation (theory)

 • Average grain & Sorbent particle regions:
 a. Sintered \((1-X_{\text{max}})\)
 b. Converted to CaCO\(_3\) \((X_{\text{carb}})\)
 c. Free active CaO \((f_a)\):
 \[
 f_a = X_{\text{max}} - X_{\text{carb}}
 \]

 • The maximum carbonation conversion \((X_{\text{max}})\) decays with carbonation-calcination cycles \((N)\) due to sintering

 • An equivalent concept to cycles for continuous conditions is the cumulative sorbent specific CO\(_2\) loading \(L(t)_{\text{CO2}}\):

 \[
 L(t)_{\text{CO2}} = \int \frac{F_{\text{CO2}} E_{\text{CO2}} dt}{n_{\text{Ca,total}}}
 \]

 \(F_{\text{CO2}}\): Inlet molar flow of CO\(_2\) to carbonator (mol/h)
 \(E_{\text{CO2}}\): CO\(_2\) capture efficiency (-)
 \(n_{\text{Ca,total}}\): Total Ca mol in the whole system
3. Process Characterization

a. Chemical degradation (results)

- The X_{max} decreases with increasing CO$_2$ loading ($L(t)_{\text{CO}_2}$, mol$_{\text{CO}_2}$/mol$_{\text{CaO}}$)

- Regarding low sorbent CO$_2$ loading, i.e. $L(t)_{\text{CO}_2} < 1.5$ mol$_{\text{CO}_2}$/mol$_{\text{CaO}}$:
 - X_{max} measured is 12-18 %
 - $X_{\text{max}} > 30$ % was expected from thermobalance curve

 ⇒ Reason may be that pre-calcination (residence time: 1h) causes sintering

- Regarding high CO$_2$ loading values of i.e. $L(t)_{\text{CO}_2} > 3$ mol$_{\text{CO}_2}$/mol$_{\text{CaO}}$:
 - Both decay curves match

- The $L(t)_{\text{CO}_2}$ can characterize the sorbent decay for the given conditions

CFB carbonator, $T_{\text{carb}} = 650$ °C, inlet CO$_2$ conc. = 15 %vol., BFB regenerator, $T_{\text{reg}} = 900$ °C, $P_{\text{CO}_2} < 0.3$ bar, Swabian Alb A
3. Process Characterization

b. Regenerator operation (theory)

What is the metric for regenerator performance?

- The regenerator efficiency:
 \[\eta_{\text{reg}} = \frac{X_{\text{carb}} - X_{\text{calc}}}{X_{\text{carb}}} \]

- When \(X_{\text{reg}} = 0 \) → \(\eta_{\text{reg}} = 1 \) and when \(X_{\text{carb}} = X_{\text{reg}} \) → \(\eta_{\text{reg}} = 0 \)

Why is it important?

- Through carbonator mass balance:
 \[\frac{E_{\text{CO}_2}}{X_{\text{carb}}} = \frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \eta_{\text{reg}} \]

- A kinetic situation \((E_{\text{CO}_2}, X_{\text{carb}}) \) is possible for a constant \(F_{\text{Ca}}/F_{\text{CO}_2} \eta_{\text{reg}} \)

✓ The calcium looping ratio \((F_{\text{Ca}}/F_{\text{CO}_2}) \) needed is minimized when \(\eta_{\text{reg}} = 1 \)!
3. Process Characterization

b. Regenerator operation (results)

- X_{carb}: carbonation conversion of solids entering the regenerator
- r_{reg}: the sorbent residence time

\Rightarrow The regenerator efficiency (η_{reg}) decreases with increasing $X_{\text{carb}}/r_{\text{reg}}$

- At 900 °C and $P_{\text{CO}_2} < 0.3$ bar:
 - At $X_{\text{carb}}/r_{\text{reg}} < 2.5$ 1/h, then $\eta_{\text{reg}} > 90 \%$
 - At $X_{\text{carb}}/r_{\text{reg}} > 6$ 1/h, then $\eta_{\text{reg}} < 50 \%$

- Residence time > 3 min for any design needed
- The ratio $X_{\text{carb}}/r_{\text{reg}}$ characterizes the η_{reg} for given temperature, partial pressure of CO$_2$
For constant temperature & inlet CO$_2$ concentration:

- The CO$_2$ capture efficiency is influenced by:
 - **The particle reaction rate:**
 \[
 \frac{dX_{\text{carb}}}{dt} \sim (X_{\text{max}} - X_{\text{carb}})^{2/3}
 \]
 - Dependant on:
 - The actual carbonation conversion (X_{carb})
 - The X_{carb} is inversely proportional to $F_{\text{Ca}}/F_{\text{CO}_2}$
 - The maximum carbonation conversion (X_{max}), dependant on F_{0}/F_{CO_2}
 - **The carbonator space time (τ)**
 \[
 \text{Spacetime}(\tau) = \frac{\text{moles Ca in Carbonator}}{\text{moles CO}_2 / h \text{ entering the Carbonator}} = \frac{n_{\text{Ca}}}{F_{\text{CO}_2}} \text{ in h}
 \]
 - **Active space time combines τ and reaction rate:**
 \[
 \tau \text{ active} = \tau \cdot (X_{\text{max}} - X_{\text{carb}}) = \tau \cdot f_a
 \]
3. Process characterization

c. Carbonator operation (results)-The characteristic factor of active space time

- For a gas-solid contacting mode (BFB or CFB) the τ_{active} is:
 - the characteristic factor in regard to the carbonator E_{CO2}/E_{eq}

- For same active space time value:
 - CFB carbonators (INCAR-CSIC & IFK) result to better E_{CO2}/E_{eq} values than the BFB carbonator.
 - Because the BFB carbonator exhibits bad gas-solid contacting

- All data sets exhibit a critical active space time value above which $E_{CO2}/E_{eq} > 90 \%$ is obtained
 - CFB carbonator→critical τ_{active} of 0.01 h, while the BFB carbonator→critical τ_{active} is 0.05 h

Inlet CO$_2$ conc. = 11-17 %, $T_{carb} = 634-660 \degree C$, $X_{max} = 0.08-0.23$

Source: Rodríguez et al., Energy Procedia, GHGT10 conference
4. Conclusions (I)

• Chemical sorbent degradation
 ✓ $L(t)_{CO2}$ characterizes sorbent decay at given conditions, during DFB mode operation
 – At $L(t)_{CO2} < 1.5 \, \text{mol}_{CO2}/\text{mol}_{CaO}$, the X_{max} is 12-18 %, less than expected from TGA
 – At $L(t)_{CO2} > 3 \, \text{mol}_{CO2}/\text{mol}_{CaO}$, the X_{max} decay follows the expected TGA curve

• Regenerator performance:
 – For constant regenerator temperature and partial pressure of CO$_2$:
 ✓ The ratio of the incoming sorbent carbonation conversion (X_{carb}) and regenerator residence time (r_{reg}) characterizes-defines the regeneration efficiency
 ✓ An $X_{carb}/r_{reg} < 2.5 \, 1/h$ leading to $\eta_{reg} > 90\%$ should be considered for any new design
4. Conclusions (II)

- **Carbonator performance**
 - The active space time (τ_{active}) is the carbonator characteristic factor
 - \Rightarrow BFB carbonator: $\tau_{active} > 0.05$ h $\rightarrow E_{CO2}/E_{eq} > 90 \%$
 - \Rightarrow CFB carbonator: $\tau_{active} > 0.01$ h $\rightarrow E_{CO2}/E_{eq} > 90 \%$
 - Increasing F_{Ca}/F_{CO2} increases carbonation reaction rate and therefore E_{CO2}
 - \Rightarrow BFB carbonator: $F_{Ca}/F_{CO2} > 12 \rightarrow E_{CO2}/E_{eq} > 90 \%$
 - \Rightarrow CFB carbonator: $F_{Ca}/F_{CO2} > 9 \rightarrow E_{CO2}/E_{eq} > 90 \%$

- **Future scaling up of the calcium looping process is feasible in Dual Fluidized Beds**
- **Scale up can be based on proposed characteristic factors**
Thank you for your attention.
Questions?
3. Process Characterization
Carbonator operation (results)-The key parameters of F\textsubscript{Ca}/F\textsubscript{CO2} and X\textsubscript{max}

- \(\frac{E_{CO2}}{E_{eq}} \) increases with \(F_{Ca}/F_{CO2} \)

\[\Rightarrow \text{From mass balance: } \frac{X_{carb}}{F_{Ca}/F_{CO2}} \sim \frac{1}{F_{Ca}/F_{CO2}} \]

- The reaction rate is proportional to:

\[\frac{dX_{carb}}{dt} \sim (X_{max} - X_{carb})^{2/3} \sim f_a^{2/3} \]

 Increasing \(F_{Ca}/F_{CO2} \) increases the carbonation rate & thus \(\frac{E_{CO2}}{E_{eq}} \)

**CFB carbonator, inlet \(CO_2 \) conc. = 11.3 %vol, \(T_{carb} = 650 \, ^\circ C \),
Swabian Alb A, dp= 0.3-0.6mm

- Even for very sintered particles (\(X_{max} = 8\text{--}10\% \)) when using a CFB carbonator:

\[F_{Ca}/F_{CO2} > 9 \rightarrow \frac{E_{CO2}}{E_{eq}} > 90 \]

\[\checkmark \text{ Similar to what has been considered in steam cycle-economical studies} \]
3. Process Characterization
Carbonator operation (results)-The key parameters of \(\frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \) and \(X_{\text{max}} \)

- For the same \(\frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \) value higher \(\frac{E_{\text{CO}_2}}{E_{\text{eq}}} \) is obtained for higher \(X_{\text{max}} \)

 ✔ Increasing \(X_{\text{max}} \) means increment of the carbonation rate & thus \(\frac{E_{\text{CO}_2}}{E_{\text{eq}}} \)

\[
\frac{dX_{\text{carb}}}{dt} \sim \left(X_{\text{max}} - X_{\text{carb}} \right)^{2/3} \sim f_a^{2/3}
\]

- When \(\frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \), \(\frac{E_{\text{CO}_2}}{E_{\text{eq}}} \) are defined:

 \(\Rightarrow X_{\text{max}} \) is a function of \(\frac{F_0}{F_{\text{CO}_2}} \)

 (Hawthorne 2008; Rodríguez 2010)

CFB carbonator, inlet \(\text{CO}_2 \) conc. = 11.3 %vol, \(T_{\text{carb}} = 650 \degree \text{C} \),

Swabian Alb A, dp= 0.3-0.6mm

✔ \(\frac{E_{\text{CO}_2}}{E_{\text{eq}}} \) is set by the pair \(\frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \) & \(X_{\text{max}} \)

✔ \(\frac{E_{\text{CO}_2}}{E_{\text{eq}}} \) of 90 % can be achieved by a combination:

 \(\Rightarrow \) of „low“ \(\frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \) and „high“ \(X_{\text{max}} \), e.g.: (3, 15.8 %)

 \(\Rightarrow \) of „high“ \(\frac{F_{\text{Ca}}}{F_{\text{CO}_2}} \) and „low“ \(X_{\text{max}} \), e.g.: (16, 6.0 %)
3. Fluid-Dynamic Characterization

- The carbonator flow is defined by:
 - Pressure drop profile
 - Solid fraction profile: $\varepsilon = \frac{l}{\rho g \Delta}$

- The carbonator consists of 3 regions:
 - A dense region ($\varepsilon_s = 0.1-0.2$)
 - A lean region ($\varepsilon_s = 0.01-0.03$)
 - An exit region ($\varepsilon_{s \text{ exit}} > \varepsilon_{s \text{ lean}}$)

- The entrainment was found to be:
 - 15-20 kg/m²s

✓ The ε_s values, gas-solid contacting modes of the regions influence axial CO₂ capture
✓ 80% of the CO₂ capture is within the dense region
✓ A cone valve was used to control the calcium looping rate between carbonator and regenerator

Carbonator riser, $u_0 = 5.75$ m/s, inventory = 3.9 kg, $\Delta P = 98$ mbar, $dp = 0.3-0.6$ mm
4. Kinetic Characterization
b. Mechanical degradation (results)

- **Moderate attrition behaviour:**
 - d_{50} reduces from 340 µm to 325 µm after pre-calcination
 - Reason is the mild mechanical stresses of BFB pre-calcination
 - Further minor decrease to 300 µm after 8 h of operation
 - Reason may be that sintering during pre-calcination increases sorbent mechanical strength

![Particle Size Distribution](chart.png)

- **Cumulative size distribution**
 - psd after 8 h operation
 - psd after first calcination
 - psd of raw limestone

Particle Size Distribution of initial Swabian Alb A limestone, of material after pre-calcination with residence time of > 1 h and after 8 h of operation

- **Pre-calcination is considered industrially with a CaCO$_3$ pre-calciner**

- **The attrition rate found is 2 %wt./h, corresponding to a make-up flow F_0/F_{CO2} of 0.04**
 - Since a make-up flow of $F_0/F_{CO2} > 0.08$ is feasible to maintain chemical activity: **Attrition values reported here are not a process limitation**