Thermodynamic analysis of different SE-SMR combined cycle-based plants

M.C. Romano, L.C. Gianni, D. Piron – Politecnico di Milano, Energy Department
matteo.romano@polimi.it

3rd IEAGHG Network Meeting and Technical Workshop on High Temperature Solids Looping Cycles

Vienna University of Technology, 30th-31st August 2011.
Thermodynamic principles - reforming

Pre-combustion CO₂ capture plants based on conventional reforming technologies:

- SMR / ATR
 \[\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \quad (\text{SMR}) \quad \Delta H^\circ_r = +205.9 \text{ kJ/mole} \]

- HT-WGS
- LT-WGS

\[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad (\text{WGS}) \quad \Delta H^\circ_r = -41.2 \text{ kJ/mole} \]

- CO₂ absorption
- H₂ oxidation

- 3 reactors for H₂-rich syngas production
- CO₂ removed in a separate process
- Large heat exchanging surface
Thermodynamic principles - reforming

Pre-combustion CO₂ capture plant based on Sorption Enhanced-Steam Methane Reforming (SE-SMR):

\[
\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \quad \text{(SMR)} \quad \Delta H^\circ_r = +205.9 \text{ kJ/mole}
\]

\[
\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2 \quad \Delta H^\circ_r = +179.2 \text{ kJ/mole}
\]

\[
\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \quad \text{(WGS)} \quad \Delta H^\circ_r = -41.2 \text{ kJ/mole}
\]

\[
\text{CaO}(s) + \text{CO}_2 \rightarrow \text{CaCO}_3(s) \quad \text{(carb)} \quad \Delta H^\circ_r = -179.2 \text{ kJ/mole}
\]

\[
\text{CH}_4 + 2\text{H}_2\text{O} + \text{CaO}(s) \rightarrow \text{CaCO}_3(s) + 4\text{H}_2 \quad \Delta H^\circ_r = -14.5 \text{ kJ/mole}
\]
Options for power island

- SOFC-based power generation:
 - Low pressure system → high CO₂ capture and H₂ yields
 - Heat for calcination from SOFC waste heat

Technical challenges:
 - Development of high temperature (1100°C) cooled fuel cell
 - Very high temperature SOFC to calciner heat transfer system

- Combined cycle-based power generation:
 - High pressure reformer (H₂ cooling and compression should be avoided)
 - Heat for calcination from oxy-fuel combustion

Technical challenges:
 - Difficult calcination: temperature and/or pressure swing

State of the art gas turbines: 60.75% efficiency achieved at the Irsching (Bavaria) combined cycle power plant
Process modeling calculations performed with the in-house code GS:

- Sophisticated model for the prediction of gas turbines performance
 - Stage-by-stage calculation with pre-design of each turbine row
 - Estimation of the coolant flow rate required by each row
 - Estimation of stage efficiency from geometric parameters and coolant required

- Sophisticated steam turbine model with stage-by-stage calculation
 - Estimation of stage efficiency from non-dimensional parameters (specific speed) and stage size

CC-based plant

- Reformer: 25 bar, 700°C, S/C = 4.5
- Steam dilution in the calciner $\Rightarrow T_{\text{calc}} = 1050^\circ\text{C}$
- Solids preheating between reformer and calciner
- Expander for the steam-rich (~70%H$_2$O) calciner exhaust
• Oxygen produced with O₂ transport membrane @ 850°C
• GT with sequential combustion
Performance

<table>
<thead>
<tr>
<th></th>
<th>NGCC</th>
<th>ATR+ MDEA</th>
<th>SE-SMR crio-ASU</th>
<th>SE-SMR OTM</th>
<th>Advanced SE-SMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power, MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas turbine</td>
<td>273.4</td>
<td>287.7</td>
<td>316.1</td>
<td>290.8</td>
<td>316.1</td>
</tr>
<tr>
<td>Steam turbine</td>
<td>150.7</td>
<td>157.2</td>
<td>77.96</td>
<td>82.59</td>
<td>148.7</td>
</tr>
<tr>
<td>H$_2$O/CO$_2$ expander</td>
<td>-</td>
<td>-</td>
<td>94.67</td>
<td>94.29</td>
<td>-</td>
</tr>
<tr>
<td>O$_2$ production and compression</td>
<td>-</td>
<td>-</td>
<td>-26.83</td>
<td>-9.38</td>
<td>-23.74</td>
</tr>
<tr>
<td>N$_2$ compr./ Air boost compr.</td>
<td>-</td>
<td>-7.09</td>
<td>-10.82</td>
<td>-</td>
<td>-10.83</td>
</tr>
<tr>
<td>CO$_2$ compression</td>
<td>-</td>
<td>-15.14</td>
<td>-22.96</td>
<td>-22.84</td>
<td>-5.10</td>
</tr>
<tr>
<td>Other auxiliaries</td>
<td>-5.25</td>
<td>-10.65</td>
<td>-4.48</td>
<td>-4.58</td>
<td>-5.99</td>
</tr>
<tr>
<td>Net power, MW$_e$</td>
<td>418.8</td>
<td>412</td>
<td>423.6</td>
<td>430.88</td>
<td>419.2</td>
</tr>
<tr>
<td>Net efficiency, %</td>
<td>58.59</td>
<td>50.65</td>
<td>49.46</td>
<td>50.56</td>
<td>50.19</td>
</tr>
<tr>
<td>Carbon Capture Ratio, %</td>
<td>-</td>
<td>91.56</td>
<td>87.98</td>
<td>87.99</td>
<td>87.96</td>
</tr>
<tr>
<td>Specific emission, g$_{CO_2}$/kWh</td>
<td>350.2</td>
<td>34.2</td>
<td>49.8</td>
<td>48.73</td>
<td>49.2</td>
</tr>
<tr>
<td>CO$_2$ avoided, %</td>
<td>-</td>
<td>90.23</td>
<td>85.77</td>
<td>86.08</td>
<td>85.95</td>
</tr>
<tr>
<td>SPECCA, MJ${LHV}$/kg${CO_2}$</td>
<td>-</td>
<td>3.05</td>
<td>3.78</td>
<td>3.24</td>
<td>3.42</td>
</tr>
</tbody>
</table>

\[
SPECCA = \frac{\Delta \text{Heat rate}}{\Delta \text{Specific emissions}} = \frac{3600 \cdot (1/\eta - 1/\eta_{ref})}{e_{ref} - e}
\]

Performance

Net efficiency, %LHV

CO2 avoided, %

Ca utilization

- Criogenic ASU
- OTM
Another option for calcination: Cu-Ca process

Another option for calcination: Cu-Ca process

- High temperature heat recovered as chemical energy
- lower CH₄ consumption for regeneration: H₂ yield from 2 to 2.5
- lower Cu/Ca ratio required
Cu-Ca process-based CC plant
Performance

<table>
<thead>
<tr>
<th></th>
<th>NGCC</th>
<th>ATR+MDEA</th>
<th>SE-SMR cryo-ASU</th>
<th>SE-SMR OTM</th>
<th>Advanced SE-SMR</th>
<th>CuCa process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric power, MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas turbine</td>
<td>273.4</td>
<td>287.7</td>
<td>316.1</td>
<td>290.8</td>
<td>316.1</td>
<td>314.9</td>
</tr>
<tr>
<td>Steam turbine</td>
<td>150.7</td>
<td>157.2</td>
<td>77.96</td>
<td>82.59</td>
<td>148.7</td>
<td>124.4</td>
</tr>
<tr>
<td>H₂O/CO₂ expander</td>
<td>-</td>
<td>-</td>
<td>94.67</td>
<td>94.29</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>O₂ production and compression</td>
<td>-</td>
<td>-</td>
<td>-26.83</td>
<td>-9.38</td>
<td>-23.74</td>
<td>-</td>
</tr>
<tr>
<td>N₂ compr./ Air boost compr.</td>
<td>-</td>
<td>-7.09</td>
<td>-10.82</td>
<td>-</td>
<td>-10.83</td>
<td>-5.36</td>
</tr>
<tr>
<td>CO₂ compression</td>
<td>-</td>
<td>-15.14</td>
<td>-22.96</td>
<td>-22.84</td>
<td>-5.10</td>
<td>-14.32</td>
</tr>
<tr>
<td>Other auxiliaries</td>
<td>-5.25</td>
<td>-10.65</td>
<td>-4.48</td>
<td>-4.58</td>
<td>-5.99</td>
<td>-3.41</td>
</tr>
<tr>
<td>Net power, MWₑ</td>
<td>418.8</td>
<td>412</td>
<td>423.6</td>
<td>430.88</td>
<td>419.2</td>
<td>416.22</td>
</tr>
<tr>
<td>Net efficiency, %</td>
<td>58.59</td>
<td>50.65</td>
<td>49.46</td>
<td>50.56</td>
<td>50.19</td>
<td>50.92</td>
</tr>
<tr>
<td>Carbon Capture Ratio, %</td>
<td>-</td>
<td>91.56</td>
<td>87.98</td>
<td>87.99</td>
<td>87.96</td>
<td>84.38</td>
</tr>
<tr>
<td>Specific emission, gCO₂/kWh</td>
<td>350.2</td>
<td>34.2</td>
<td>49.8</td>
<td>48.73</td>
<td>49.2</td>
<td>63.80</td>
</tr>
<tr>
<td>CO₂ avoided, %</td>
<td>-</td>
<td>90.23</td>
<td>85.77</td>
<td>86.08</td>
<td>85.95</td>
<td>81.78</td>
</tr>
<tr>
<td>SPECCA, MJₑₗH/VgCO₂</td>
<td>-</td>
<td>3.05</td>
<td>3.78</td>
<td>3.24</td>
<td>3.42</td>
<td>3.23</td>
</tr>
</tbody>
</table>
Conclusions

• SE-SMR in CC-based configurations can assure electric efficiencies in line with competitive technologies for short-mid term power plants and slightly lower CO₂ capture rates.

• Advantages over steam reforming-based plants can arise from a simpler and lower cost hydrogen production island.

• The development of a sorbent with high capacity and able to withstand high calcination temperatures for many cycles is crucial.

• Interesting H₂ yields: higher energy advantages as hydrogen production plants.
Thank you

... and if you need a partner in joint projects for good process integration and simulation...