Development of promoted ilmenite for high-Temp CLC and Cu based oxygen carrier for low-Temp CLC and continuous tests in dual fluidized beds

Hongming Sun, Jinhua Bao, Lei Xu, Zhenshan Li, Ningsheng Cai
Department of Thermal Engineering, Tsinghua University

2013-09-02
Contents

- Introduction
- Ilmenite for high temp. CLC
- Cu-based OC for low temp. CLC
- Continuous tests
- Conclusions
Introduction: Direct solid fuel CLC

Key requirements for oxygen carrier:
1. High reducing reactivity
2. Low-cost (restraints from ash)

Syngas Conversion
Gasifying rate + Reducing rate

Syngas out of fuel reactor
1. Position where syngas is released
2. Reaction equilibrium

Contents

- Introduction
- Ilmenite for high temp. CLC
- Cu-based OC for low temp. CLC
- Continuous tests
- Conclusions
Study of ilmenite

<table>
<thead>
<tr>
<th>Location</th>
<th>Apparatus</th>
<th>Fuel</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lab scale test facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIC</td>
<td>TGA</td>
<td>$\text{H}_2,\text{CO,CH}_4$</td>
<td>2010</td>
</tr>
<tr>
<td>Chalmers</td>
<td>FB</td>
<td>coal</td>
<td>2008</td>
</tr>
<tr>
<td>Siegen</td>
<td>FB</td>
<td>CO</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>Interconnected fluidized bed reactors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSIC</td>
<td>500 W</td>
<td>coal</td>
<td>2011</td>
</tr>
<tr>
<td>Chalmers</td>
<td>10 kW</td>
<td>coal</td>
<td>2008</td>
</tr>
<tr>
<td>Stuttgart</td>
<td>10 kW</td>
<td>syngas</td>
<td>2011</td>
</tr>
<tr>
<td>Hamburg</td>
<td>25 kW</td>
<td>coal</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td>Pilot dual fluidized beds plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalmers</td>
<td>100 kW</td>
<td>coal</td>
<td>2012</td>
</tr>
<tr>
<td>Vienna</td>
<td>120 kW</td>
<td>$\text{H}_2,\text{CO,CH}_4$</td>
<td>2010</td>
</tr>
<tr>
<td>Darmstadt</td>
<td>1 MW</td>
<td>coal</td>
<td>2011</td>
</tr>
</tbody>
</table>
Main issue with Ilmenite

- Low reactivity
- Incomplete gas conversion
- Large bed inventory

How to improve the reactivity?

Redox cycles in fluidized bed activation
Foreign ion modified Ilmenite

How we prepare:
Wet impregnation

Raw ilmenite \(\xrightarrow{\text{Impregnation}}\) Solution:
- \(K_2CO_3\)
- \(Na_2CO_3\)
- \(Ca(NO_3)_2\cdot4H_2O\)

\(\xrightarrow{\text{Impregnation Dry@120^\circ C}}\) Calcine \(\xrightarrow{\text{Calcine @900^\circ C 30min}}\) Sieve to 125-300 µm

Metal/ilmenite=5, 10, 15 wt.%

How we test this OC:
- Single fluidized bed
- TGA for dynamic parameters
- SEM for microscopic structure
- Dual fluidized bed Continuous test
Results in TGA

- Reactivity of some modified Ilmenite (10%Na, 10%K, 15%K) increases after 40 cycles; this increase is far greater than the raw Ilmenite;
- 15%K is the best option for improving reactivity;
- 40-cycled K15-ilmenite has a 7 times faster reactivity than the activated raw Ilmenite.
Results – Change of microstructure

The modified ilmenite produce more pores or cracks than the activated raw ilmenite.

- The surface area and pore volume of the modified ilmenite increase as the K^+ increases
- K15-ilmenite: BET (1.27 m2/g), pore volume (4.63×10^{-6} m3/kg)
During 100-cycle test, K15-ilmenite keeps its stability, almost no attrition and agglomeration happens. Almost all CO can be burned during the 100 cycles.
Results – K loss issue

15% K-ilmenite after 70 cycles

15% K-ilmenite after 100 cycles

EDS results of K distribution

<table>
<thead>
<tr>
<th></th>
<th>Fresh</th>
<th>40cycle</th>
<th>70cycle</th>
<th>100cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside surface</td>
<td>8.46</td>
<td>1.34</td>
<td>1.18</td>
<td>1.88</td>
</tr>
<tr>
<td>Middle</td>
<td>0.94</td>
<td>4.27</td>
<td>3.77</td>
<td>2.73</td>
</tr>
<tr>
<td>Center</td>
<td>0.28</td>
<td>3.46</td>
<td>3.33</td>
<td>3.38</td>
</tr>
</tbody>
</table>
Results – Effect of ilmenite reactivity on bed inventory

Because the reducing rate of promoted ilmenite is 8~10 times faster than the raw ilmenite, the bed inventory in fuel reactor will decrease as 8~10 times. The promoted natural ilmenite behaves like synthetic materials.
Contents

- Introduction
- Ilmenite for high temp. CLC
- Cu-based OC for low temp. CLC
- Continuous tests
- Conclusions
Two-Stage CLC process

Particles in gas after cyclone; bag filter – temp decrease; to involve low temp. CLC
The dust-free gas do not contaminate carriers; to involve high reactivity OCs
Cu-based OC: high reactivity, no agglomeration at low temp.

Removing unburnt gaseous components
Cement supported CuO OC

How we prepare OC: Mechanical mixing

How we design this low temp. CLC and test the OC:

- TGA for dynamic parameters
- TGA for stability
- Bench fluidized bed experiments
- Interconnected fluidized bed experiments
Results in TGA

- The increase of reduction conversion rate is not obvious within 300-700°C.
- Conversion within 150s: 100% at 700°C, 90% at 300°C.

- The increase of oxidation conversion rate is obvious from 400 °C to 500 °C, but not from 500 °C to 600 °C.
- 500 °C for air reactor.
The cement supported carrier shows good reactivity stability over 20 cycles.
Results in the fluidized bed

- Complete CO conversion: 30g 25%Cu, CO 2.5L/min 160s,
- No agglomeration
- Attrition: mass loss after 100 cycle 11.2% of the initial mass.
Contents

- Introduction
- Ilmenite for high temp. CLC
- Cu-based OC for low temp. CLC
- Continuous tests
- Conclusions
1 kW three fluidized bed reactor

1 kW: focus on testing OC
50 kW: focus on reactor design

Three bubbling FB, cyclones, loopseals
Diameter: 50mm
Bed inventory: ~6 kg
Raw Ilmenite

- The stable CO conversion ~60%
- No agglomeration
- Mass loss caused by attrition and fragmentation is 0.87%
10% K promoted Ilmenite

After 100 h running, 24% (1500 g) raw Ilmenite was extracted and impregnated with 10% K.

- The CO conversion >79%;
- Gradual increase of CO: the particle elutriation along with K volatilization;
- No agglomeration;
- Mass loss caused by attrition and fragmentation is 0.79%.
Effect of FR temp. on CO conversion is less than the raw Ilmenite.
Cement supported CuO

18h continuous running with 5%CO

- Complete CO conversion;
- No agglomeration;
- Low temperature CLC for converting the unburnt fuel is feasible.
Conclusions

Achieved:
- Raw ilmenite improved by introducing foreign ion
- A method to eliminate the combustible gas from the outlet of the fuel reactor
- Continuous operations shows the effect of introducing foreign ion to OCs; No agglomeration happens, low attrition rate; proves the feasibility of low temp. CLC

Next step:
- Scale up the reactor to 50 kW;
- >500 h Continuous test of biomass and lignite with the developed oxygen carriers in the 50 kW unit.
Thank you!

Acknowledgements
National Natural Science Foundation of China (51061130535)
National Key Basic Research and Development Program (2011CB707301)
Program for New Century Excellent Talents in University (NCET-12-0304)
Tsinghua University Initiative Scientific Research Program
Reference

