Field measurements of NOx and mercury emissions from compression condensates at the Callide Oxyfuel Project

Rohan Stanger*a, Timothy Tinga, Lawrence Beloa, Chris Sperob, Terry Walla
aUniversity of Newcastle, bCallide Oxyfuel Project

5th Oxyfuel Combustion Research Network Meeting
Wuhan, CHINA
29th October 2015
The Callide Oxyfuel Project Retrofit

No deSOx / deNOx / de-Hg
All impurities sent to CPU

64-74% Hg captured in fly ash

~70% Hg^{2+} in flue gas To CPU

Courtesy of Yamada, IHI
APP Oxyfuel Course 2010
Oxyfuel research at UoN

• Part of Callide Oxyfuel Project Feasibility Study 2005-6
• Coal reactivity 2007-9
• Sulfur impacts 2009-11
 – Review, SO3 formation, catalytic impacts, ADP
• NOx in compression 2012-15
 – Effect of pressure residence time, capture in H2O
 – Laboratory compression system, mass balancing
• Hg in compression 2012-15
 – Impact of NOx + ∆P + ∆t
 – Mass balancing → Recovery methods
• Emissions from condensates (depressurised)
BACKGROUND - Liquid Sampling of Condensates
(from bench compressor)
presented at OCC3 SPAIN & published in IJGHGC

![Diagram of liquid sampling process]

- From 2nd or 3rd stage
- Condenser
- Gas / Liquid Separator
- Pressure Control
- Gas to 3rd stage or exit
- Needle valve

\[\text{NO} + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_2 \text{ (soluble)} \]

\[\text{HNO}_2 + \text{HNO}_3 \]

\[\text{HNO}_2(aq) \quad \text{HNO}_3^- \quad \text{stable ion gas} \]

\[\text{H}_2\text{O} + \quad \text{"stable species"} \]

To gas analysers Air + "volatiles"
BACKGROUND - “Volatile” NOx and Hg measured from liquid condensates on depressurisation

\[
\text{NO}_2 / \text{NO} / \text{HNO}_2 \text{ (aq)} \rightarrow \text{NO}_x \text{ (G)} \quad \text{Hg}^0 \text{ (aq)} \rightarrow \text{Hg}^0 \text{ (G)}
\]

Slow process occurs over hours

3-10% of NOx in liquid volatile

< 1% of Hg in liquid volatile
Sampling locations at COP

CPU Trial 1
Gas
Slipstream to piston compressor

LOW SOx Slip stream

HIGH SOx Slip stream

CPU Trial 2
Condensates re-emissions
Preliminary Liquid Sampling on HP Scrubber

Depressurised sampling

Pressurised sampling
Callide Volatile Condensates – Preliminary Pressurised Sampling

Degassing Aftercooler Condensate sample 24bar
~0.37g/L NO3-

Residence time impact

Degassed immediately after sampling
Volatile NOx = 5.0%

Degassed ~ 6.5 hours after sampling
Volatile NOx = 1.7%
Experimental - Sampling

- Clear vessel to control liquid volume
- Pressure resistance
- 5LPM air as sweep gas
- 40m of PFA sampling tube
- Gas Analysers
 - NOx + Hg + CO2
- Long measurements
 - 8-12 hours
NOx emissions from degassing compression condensates

Intercooler
4 bar

Aftercooler
22 bar
CPU Condensates Outcomes

• “Volatility” of condensates is time dependant (days)
• Captured Hg in liquids stable in steady state
• NOx re-emission measured as “NO2” most likely HNO2
• Similar trends to lab results

![Graphs showing volatile NOx and Hg levels over sampling days from start-up.](image-url)
Conditions to favour “stable” condensates

Volatile of NOx species in liquids inversely proportional to concentration of NO3-

Higher pressure + NO2 needed for stable liquids

![Graph showing the relationship between volatile NOx and stable NO3- in liquid](image1)

![Graph showing the relationship between NO2 concentration and stable NO3- in liquid](image2)
Hg interaction with NOx in sampling lines

22bar condensate + shaking vessel for ↑ desorption

PFA Sampling lines used

Suggests highly reactive NOx (HNO2) + downstream issues

+ve peaks in Hg correspond with NOx peaks

-ve peaks in Hg correspond with NOx peaks

Hg rises with lower NOx + Hg0 check (only Hg2+)

Hg Concentration, ng/Nm³

NOx Concentration, ppm

Time
Meanwhile back in the lab...

UoN + Macquarie University (Prof Peter Nelson) study
Combined pressurised NOx with FTIR
Understanding the NOx balance in simplified conditions at 25 bar

Diagram Flow

- **Gas/liquid contact**
 - NO (g) → 6% NOx (g) (not captured)
 - 6% HNO₃ * (deposited)
 - 88% NOx (l)

- **Depressurise**
 - 9% NOx (g) as HONO*
 - 23% NO
 - 77% NO₂
 - 91% NOx (l)

- **Remarks**
 - Formed in downstream areas of wet gas but no liquid H₂O
 - Identified in molecular sieves
 - Contacted for ~1.5 hours

* Identified by FTIR
Quantified by NOx Analyser
Implications

• Potential CPU emission points have been identified
 – Degassing compression condensates (HNO2)
 – Molecular Sieve regeneration (HNO3)
 – Both emission points easily recycled

• Stability of liquids enhanced by higher pressure, NO2 and liquid residence time
Publications

- Stanger, R., T Ting, T Wall, High pressure conversion of NOx and Hg and their capture as aqueous condensates in a laboratory piston-compressor simulating oxyfuel CO2 compression, International Journal of Greenhouse Gas Control 29, 2014

- Ting, T., R. Stanger, and T. Wall, Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions. International Journal of Greenhouse Gas Control, 18(0) 2013

Thanks for Listening

further questions?

rohan.stanger@newcastle.edu.au
N2O Production with mixed SOx /NOx Capture at 5 bar

N2O ~ 11% NOx feed N2O ~ 310 x CO2
at 25 bar N2O peak +5000ppm!

2 SLPM, 1000ppm SO2, 1000ppm NO, 5% O2, N2 bal
Overview

• Current work at UoN
• Experimental
• Results
• Key Findings
Further Research Needs

• Hg-NOx product identification
 • Different sections of compression
 • Higher temperature (<200°C directly after ΔP, dry)
 • After cooling + water condensation

• SO2-NOx combined capture in compression
 • Optimised
 • Formation of N2O minimised or accounted for

• CPU liquid product recovery
Research Needs in the COP CPU

• Australian context
 – Low Coal sulfur, no deSOx
 – Low Hg + Fabric Filter, no AC guard bed
 – No SCR/nSCR

• For a Australian retrofit
 – Caustic polishing at low pressure
 – CPU to passively remove NOx + Hg as condensates
 – Cold Box to remove remaining NOx from product CO2 and recycle
ANLEC R&D
Australian National Low Emission Coal Research & Development

• Combined Federal Government Funding & Australian Coal Association
• Addresses:
 – The near term risk reduction and technology developments necessary for successful demonstration of LECT in Australia.
 – The delivery of skills, data and knowledge to assist key stakeholders understand the benefits and deployment risks of LECT's.
 – Support for, and investigation of, issues affecting the performance of the early demonstration projects.

• Program overall funding……across 2012 to 2020 ASK NOEL
ANLECR&D Research areas at COP to reduce cost and risk

Fabric Filter (not ESP) \(\Rightarrow\) NaOH Polishing (not FGD) \(\Rightarrow\) Compression (no AC bed)

- SO3 formation \(\Rightarrow\) acid dew point corrosion + temperature
- Hg capture \(\Rightarrow\) affected by oxy-conditions or carried to CPU

- SO2 capture \(\Rightarrow\) pH and NaOH usage in high CO2
 \(\Rightarrow\) SO2/NOx reactions (N2O) in CPU
- Removal of Hg\(^{2+}\) ?

- NOx capture in CPU \(\Rightarrow\) kinetic reaction to NO2 or emitted as NO
 \(\Rightarrow\) stability of condensates
- Hg capture in CPU \(\Rightarrow\) dependant on NOx
 \(\Rightarrow\) product identification and stability
 \(\Rightarrow\) risk to brazed Al-HEX cold box
Fabric Filter Field Campaign June 2014

- Focused on SO3 + Hg
- Measurements during mode transitions
- More details given in other presentation and soon to be published
Fabric Filter Trial Outcomes

- SO3 levels below detection limit in transitions
- SO3 level 0.6 - 3.7ppm in steady state oxy-mode
- Hg affected by burner configuration

<table>
<thead>
<tr>
<th></th>
<th>AIR</th>
<th>OXY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low NOx</td>
<td>Original</td>
</tr>
<tr>
<td>Hg^{Total gas} μg/m^3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg^{Total gas} μg/m^3</td>
<td>0.07</td>
<td>0.53</td>
</tr>
<tr>
<td>Hg^{2+}</td>
<td>0%</td>
<td>77%</td>
</tr>
<tr>
<td>Hg^{Total gas} μg/m^3 Corrected to 12%CO_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg^{Total gas} μg/m^3 Corrected to 12%CO_2</td>
<td>0.06</td>
<td>0.45</td>
</tr>
</tbody>
</table>

* Highest point in transition corresponding to higher O2
Bench Compressor Trial with COP Gas Slipstream September 2013

- Used real flue gas and piston compressor
- Focus on NOx and Hg removal by varying pressure
- Some SOx included
- Presented at OCC3 and now published
Gas Slipstream Compression Outcomes

- High capture rates with higher pressure (to 30bar)
- ~100%SOx ~80% NOx ~100% Hg
- NOx capture limited by kinetics + residence time
- Hg capture limited by amount of NO2
- Similar trends to laboratory measurements
CPU Condensates Trial June 2014

- Focus on stability of compression condensates
- Measured re-emission of NOx and Hg after depressurising
- Long measurements (~8-12 hours)
- Specifically developed methodology
- Details given in other presentation and just published