Development of Staged, Pressurized Oxy-Combustion

Presented by:
Akshay Gopan

Co-Authors:
WUSTL: Z. Yang, A. Adeosun, B.M. Kumfer, R.L. Axelbaum
EPRI: J. Philips, D. Thimsen

IEA Oxy-fuel Network Meeting, Wuhan, China
Oct. 28, 2015
1st Generation Oxy-Combustion

Image: ALSTOM
Pressurized Oxy-Combustion

• The requirement of high pressure CO₂ for sequestration enables pressurized combustion as a tool to increase efficiency and reduce costs.

• Benefits of Pressurized Combustion
 – Recover latent heat of flue gas moisture ➔ improved efficiency & cost
 – Combine latent heat recovery ➔ reduced cost
 with integrated pollution removal
 – Reduce gas volume ➔ reduced equipment size
 – Avoid air-ingress ➔ reduced CO₂ purification costs
 – Higher P₀₂ ➔ reduced oxygen requirements for burnout
 – Optically dense atmosphere ➔ improved control of radiation HT
Fuel-Staged Oxy-Combustion

Multiple boiler modules connected in series w.r.t combustion gas

Enables near-zero flue gas recycle

Maintains high average temperature – increased radiative over convective heat transfer.
AG2 Check some other presentation might have a better figure with the S.R. bold
Gopan, 18/10/2015
SPOC Process Flow Diagram

Dry Pumps or Lockhoppers

Coal Milling

Coal Feeders

Dry N₂ to Cooling Tower

Moist N₂

Air

ASU Cold Box

N₂

Steam Cycle

O₂

Compressor

O₂

Steam Cycle

Steam Cycle

Steam Cycle

Steam Cycle

Coal

Vent Gas

Cooling Water

CO₂ Boost Compressor

CO₂ Pipeline Compressor

CO₂ to Pipeline

Direct Contact Column

SO₃ and NOₓ removal

Std. ASU: O₂ P = 1.1 bar
Process Modeling Results – Net Efficiency

- More than 6 percentage points increase in net plant efficiency over 1st generation oxy-combustion process.

- Independent study shows more than 2.5 times increase in efficiency improvement over other pressurized oxy-combustion process

\[\text{Increase in Efficiency:} \quad 2.3\ \text{pts} \quad \rightarrow \quad 6.2\ \text{pts} \]

\[\text{Net Plant Efficiency:} \quad \sim 38.3\% \quad \rightarrow \quad 29.5\% \quad \rightarrow \quad 35.7\% \]

\[\text{Sources:} \ a \text{Scaled (IECM \& DOE/NETL);} \ b \text{DOE/NETL 401/093010;} \ c \text{Gopan et al (2014) Applied Energy;} \ d \text{Hagi et al (2014) Energy Procedia.} \]
Add EDF results.
Gopan, 19/10/2015
Desired Characteristics of a Pressurized Boiler

- Long combustion zone for distributed heat release
- Avoid flame impingement.
- Keep max. radiant heat flux below material constraints for standard materials.
- Minimize ash deposition and slagging
 - axial flow (no swirl), low mixing sufficiently high velocity

Source: NETL
Effects of flame shape on wall heat flux

Xia et al., Eastern States Section of the Combustion Institute, 2013
1 atm. Burner Performance Test with Propane

Diagram showing a burner with dimensions labeled as follows:
- φ2.37"
- φ6.6"
- 30"
- 18"

To Filter & Blower

Comparative images:
- Pure Oxygen
- 50% Oxygen
Pulverized Coal Combustion in O_2

- 25 kW thermal input
- CO$_2$ carrier gas
- Pure O$_2$, S.R. = 4

Wall Deposition Probe

1/4000 s shutter speed
AG5 I think I prepared this for either Joerg or EPRI.
Gopan, 19/10/2015
Full-Scale Conceptual Design: CFD Results

1536 MW thermal input
Fuel Distribution and Heat Flux

<table>
<thead>
<tr>
<th>Thermal input</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>340 MW</td>
<td>302 MW</td>
<td>385 MW</td>
<td>513 MW</td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing heat flux distribution across stages](image)
Radiant Heat Transfer

Optically thick medium

Oxidizer
Fuel
Oxidizer

Flame

Incoming radiation

Incident radiation

Scattered

Emitted

Outgoing radiation

\[\text{CO}_2 \]
\[\text{H}_2\text{O} \]
\[\text{Char/ash} \]
Fundamental study on radiation

Effect of absorption coefficient on radiation with profiles

Only 10% of transmission occurs at optical thickness of 2.3

$$\zeta = \int_0^s k_a ds$$
Demonstration of Radiative trapping

First 30 m of full scale SPOC Stage 1

\[\zeta = 2.3 \]

\[x = 10 \text{ m} \]
Conclusions

- A high efficiency carbon capture process was described and the improvements in efficiency shown.
- An axial and centered flame demonstrated with the new burner & furnace design.
- Flame impingement on wall avoided.
- Radiative trapping as a means to control radiative heat flux described.
- Full scale SPOC boiler models with manageable wall heat flux shown.
Acknowledgements

Funding

U.S. Department of Energy: Award # DE-FE0009702

Wyoming Advanced Conversion Technology Research Program

Consortium for Clean Coal Utilization, Washington Univrsity in St. Louis

Sponsors: Arch Coal, Peabody Energy, Ameren
U.S. DOE Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Thank You
Thank You!