Evaluation of **Geoelectrical Crosshole** and **Surface-Downhole** Measurements

presented by

Conny Schmidt-Hattenberger for the Ketzin ERT group
Outline

I. Our Motivation

II. Site specifics

III. Work-Flow & Results

 Crosshole Measurements

 Surface-Downhole Measurements

IV. Summary & Lessons learned
I. Motivation

Geophysical monitoring of the migration of injected CO₂ by using **seismic** and **geoelectrical** measurements

- at intermediate and high gas saturation (above 20%) geoelectrical methods are more sensitive than seismic methods
- geoelectrical measurements are relatively easy to deploy
- higher repetition rates and cost-efficiency, **but**: lower structural resolution

![Graph](image.png)

P-wave velocity and **resistivity** versus CO₂ saturation - measured at Nagaoka test site (Japan), X. Zue et al., SPE 126885, Nov. 2009, - theoretical derived in: Wilt & Alumbaugh, 2006

→ **investigation of the feasibility** of the geoelectrical monitoring of the CO₂ migration into the saline aquifer in Ketzin

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
II. Site specifics – measurement concept

VERA

<table>
<thead>
<tr>
<th>VERA</th>
<th>June 21, 2008 baseline</th>
<th>daily</th>
<th>twice a week until December 2008</th>
<th>weekly further on</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-S / S-D</td>
<td>Pre-Injection Phase</td>
<td>Start Injection Phase</td>
<td>Regular Injection Phase</td>
<td></td>
</tr>
<tr>
<td>Operational Work</td>
<td>June 30, 2008</td>
<td>July 15, 2008</td>
<td>March 20, 2009</td>
<td></td>
</tr>
<tr>
<td>Facility Testing</td>
<td>Start of Injection</td>
<td>Arrival of CO₂ at Ktzi200</td>
<td>Arrival of CO₂ at Ktzi202</td>
<td></td>
</tr>
</tbody>
</table>

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
III. Work-Flow and Results

Major phases:

(1) Operational Phase
- Design of VERA (modeling, expertise for technical layout)
- Borehole installation, organizing data recording and handling
- Development of suitable large-scale surface-downhole measurement concept

(2) Start Injection Phase
- Preliminary results (instable states based on the small amount of CO₂)
- Tool optimization (Software, Data-readout, Pre-Processing demands)

(3) Regular Injection Phase
- Ensuring of data-quality
- Consistency of models and parameters
- Alternative or improved evaluation schemes

(4) Start of data integration and joint interpretation

still in process...

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Design of Crosshole Measurements

VERA
Vertical Electrical Resistivity Array

45 permanent electrodes
15 electrodes per well
electrode spacing ~ 10 m
installation depth ~ 590 to 735 m

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Technical Layout Cross-hole ERT

VERA - **Vertical Electrical Resistivity Array**

- **Steel electrode**
- **Taper pin**
- **Insulated casing**
- **Electrical cable**

- **used current: 2.5 A max.**
- **used channels: 15**
 (for potential registration)
- **measured voltage: 50 μV to 100 mV**

ZONGE measurement equipment

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Electrode Configurations

Selection of the electrode configurations of the main VERA acquisition schemes

[Bergmann et al., 2009]
Resistivity Logging

Logging results at injection well Ktzi201

Cap rock

Reservoir

100 % brine: 0.75 Ωm
50 % brine, 50 % CO₂: 2.0 Ωm

[Ref: Norden et al., 2007]

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Laboratory Experiments

Results from laboratory flow-through experiments of WP3.1

Available lab data indicate a bulk CO₂ saturation of 50% which corresponds to a resistivity increase of about 200%.

Table: Lab data before and after CO₂

<table>
<thead>
<tr>
<th></th>
<th>Lab data before CO₂</th>
<th>Lab data after CO₂</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ktzi202_B2-3b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ [Ωm]</td>
<td>0.53</td>
<td>1.71</td>
<td>+223%</td>
</tr>
<tr>
<td>Ktzi202_B3-1b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ [Ωm]</td>
<td>0.46</td>
<td>1.26</td>
<td>+174%</td>
</tr>
</tbody>
</table>

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Forward Modeling

Synthetic resistivity models and corresponding time-lapse results

homogeneous CO₂ distribution small CO₂ plume very thin layer with CO₂ composite model

[H. Schütt, 2008]
First Results of Time-Lapse Difference Inversion

[Kießling et al., IJGGC, accepted 2010]

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
First Results from Field Data

Difference inversion:
(3D-EarthImager, AGI / USA)

THOUGH2, V2: homogeneous aquifer,
homogeneous permeability,
circular migration

Top reservoir

Bottom reservoir

08.09.2008: 1750 t CO₂

Resistivity change (%)

CO₂ gas saturation

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Quality Control of Field Data

Examples

[Bergmann, 2009]

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Sensitivity Studies

Resistivity models used for forward modeling

- Forward modeling with BERT [Rücker et al., 2006]
- 2D models with electrode geometry (6 km x 4 km)

[Bergmann et al., 2009]

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Sensitivity Studies

Evaluation of the crosshole measurement configurations

- The Bipole-Bipole configuration shows most significant alteration for vertical shaped anomalies.
- The Dipole-Dipole cross configuration shows most significant alteration for horizontal shaped anomalies.
- The Dipole-Dipole configuration does not show a distinct preference towards the shape of anomalies.
- For Bipole-Bipole and Dipole-Dipole cross data, magnitudes of synthetic and field data match.

[Reference: Bergmann, 2009]
Relating Resistivity and CO$_2$ Saturation

Multiphase fluid flow modeling of migration scenarios in the simplified injection formation model with varying reservoir permeability

\[\rho(S_{CO2}) = \frac{A \rho_w}{\phi^m(1 - S_{CO2})^n} \]

Resistivity saturation relation derived from Archie's equation (black line) for $\rho_w=0.037 \ \Omega m$, $A=1$, $m=n=2$, $\Phi=23 \%$. The grey line depicts the discretized resistivity saturation relation utilized in forward modelling.

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Relating Resistivity and CO₂ Saturation

Step 2: Comparison with field data

Examples of electrode configurations

Synthetic resistances
True reservoir data \((T,p)\)
Field data

Conclusion:
Comparison of field data and modeled data allows analysis of potential CO₂ induced alterations and noise sources in the pre-inversion domain.
But the reservoir model needs to be refined to improve the fitting of both datasets.

[Bergmann, 2009]
Error Analysis and Dataset Optimization

Synthetic three-layer model with noise ~3% + 50μV/1A

Removal of data with noise > 30%

\[\frac{\delta \rho_i}{\rho_i} = p\% + \left(\frac{\delta U}{U_i} \right) \times 100\% \]

Processed with BERT
– Boundless Electrical Resistivity Tomography

[Rücker, 2009]

<table>
<thead>
<tr>
<th>Measurement configuration</th>
<th>BB</th>
<th>DD</th>
<th>DD_lateral</th>
<th>Any (BB+DD+DDc+user defined)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data of sufficient quality</td>
<td>100%</td>
<td>20%</td>
<td>60%</td>
<td>57%</td>
</tr>
</tbody>
</table>
Crosshole-ERT Inversion Results

[C. Rücker, 2010]

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Crosshole-ERT Inversion Results

2D Inversion with BERT / cross section Ktzi200-Ktzi201: $\lambda = 100$ (regularization strength), $\rho_{\text{min}}^a = 0.05 \, \Omega \cdot m$, $\rho_{\text{max}}^a = 3 \, \Omega \cdot m$, error approximation: $3\% + 50 \, \mu V / 1 \, A$, amount of model cells: 702 (grid-model),
distribution of inverted resistivity (above), distribution of resistivity ratio (below)

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Field data: June 4, 2009

3D Inversion with BERT:

\(\lambda = 100 \)
(regularization strength),

\(\rho^{a}_{\text{min}} = 0.05 \ \Omega \text{m}, \)
\(\rho^{a}_{\text{max}} = 3 \ \Omega \text{m}, \)

error approximation: 3% + 50 \(\mu \text{V} / 1 \text{A} \)

Isosurfaces with resistivity ratios >2

\(\rightarrow \) arrival of \(\text{CO}_2 @ \)
Ktzi202 appears in the inverted data

[C. Rücker, 2010]
Large-scale geoelectrical measurements

Site map with **geoelectrical surface dipoles** (yellow dots) and **3D seismic survey at the surface** (light blue grid within the yellow quadrangle)
Surface-Downhole Data Acquisition & Pre-Processing

Data Recording
- 16 surface dipoles for current injection (15-20 min at each surface dipole)
- Potential registration at (14+3) dipoles at each well and 15 dipoles at surface
 = 1056 single potential time-series per survey

Including k - geometric factor
\[k = 4\pi \left(\frac{1}{C_1P_1} - \frac{1}{C_1P_2} - \frac{1}{C_2P_1} + \frac{1}{C_2P_2} \right)^{-1} \]

Filtering and Fourier-Transformation:
calculation of electrical resistance \(R(\Omega) \) from ratios of the amplitudes (spectra)

Pre-Processing & Data quality control
- Assignment of Data and Dipol positions

Calculation of apparent resistivities \(\rho_a \) in \(\Omega m \)
\[\rho_a = k \cdot R = k \cdot \frac{AV}{I} \]

3D Inversion
- Resistivity changes and anisotropic effects caused by CO₂ migration

Data Readout
- Data files from Texan in own data format

Protocol
- Assignment of Data and Dipol positions
- Conversion in SEGY-Format

Formatting
Surface-Downhole Inversion Results

Resistivity-Ratios:
2nd Repeat vs. 2nd Baseline

Resistivity-Ratios:
3rd Repeat vs. 2nd Baseline

depth slice @ z=-635 m
top of reservoir Ktzi201-Ktzi200

2nd Baseline: 04/2008
2nd Repeat: 11/2008
4,500 t CO₂
Arrival of CO₂ at Ktzi200 (07/2008)

3rd Repeat: 04/2009
13,500 t CO₂
Arrival of CO₂ at Ktzi200 (07/2008)
Arrival of CO₂ at Ktzi202 (03/2009)

IEA GHG - 6th Monitoring Network Meeting, May 6-8, 2010, Natchez (USA)
Results and Discussion

Preliminary Inversion Result: using 3D inversion software BERT (Rucker & Gunther, 2006)

Resistivity-Ratios: 3rd Repeat vs. 2nd Baseline

2nd Baseline: 04/2008

3rd Repeat: 04/2009
- 13,500 t CO₂
- Arrival of CO₂ at Ktzi200 (07/2008)
- Arrival of CO₂ at Ktzi202 (03/2009)

[Kießling & Rücker, 2010 (unpublished)]

surface-downhole and surface-surface data; 2nd Baseline: 1025 data points, 2nd Repeat: 1023 data points; calculation of electrical resistance from spectral analysis; 3D Inversion with BERT: calculation: λ = 100 (regularization strength), topography, range 10² to 10⁶ Ωm, error approximation: 1% + 10 μV / 4 A, amount of model cells: 19050 (tetrahedral); plotted depth slice; distribution of resistivity ratios
Results and Discussion

Geoelectrical Surface-Downhole and Crosshole data:

Geoelectrical Surface-Downhole

Geoelectrical Crosshole

Comparison

Ktzi200 Ktzi201

3rd Repeat: 27.-29.04.2009

Depth in m

[Kießling & Rücker, 2010 (unpublished)]

[Rücker, 2010 (unpublished)]

data: any; 29.04.09 (time step 87); 2D inversion with BERT: $\lambda = 100$ (regularization strength), range 0.05 to 3 Ωm, error approximation: 3% + 50 μV/1 A, amount of model cells: 702 (grid-model); cross section Ktzi200-Ktzi201 with depth; distribution of resistivity ratios

surface-downhole and surface-surface data;
2nd Baseline: 1025 data points, 2nd Repeat: 1023 data points; calculation of electrical resistance from spectral analysis;
3D Inversion with BERT: calculation: $\lambda = 100$ (regularization strength), topography, range 10^2 to 10^5 Ωm, error approximation: 1% + 10 μV/4 A, amount of model cells: 19050 (tetrahedral); plotted depth slice; distribution of resistivity ratios
Sensitivity Considerations

The sensitivity matrix S_{ij} indicates how changes in the model domain element m_j do change the data domain element f_i

$$S_{ij}(m) = \frac{\partial f_i(m)}{\partial m_j}$$

$$S = \begin{pmatrix} \frac{\partial f_1}{\partial m_1} & \cdots & \frac{\partial f_1}{\partial m_M} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_N}{\partial m_1} & \cdots & \frac{\partial f_N}{\partial m_M} \end{pmatrix}$$

[Rücker, 2010]
Intended Combination of Seismic and Geoelectric Measurements

Future studies are intended to incorporate structural constraints (e.g. from seismics) and error-weighted inversion schemes

[Bergmann, 2010]
CSEM monitoring of CO₂ injection at Ketzin pilot site
2008-2009 surveys, preliminary results

• Hole to surface CSEM
 – A complementary approach to crosshole tomography
 • Lower resolution but larger zone of detectability
 – Receiver stations in surface do no need electrodes array at the reservoir depth, one point of injection is enough
 – The metallic casing itself may be used to inject electrical current at depth
 ⇒ LEMAM – Long Electrode Mise-a-la-Masse
Two CSEM arrays are used at Ketzin pilot injection

Different current injection but same receiver stations at the surface.

Surveys:
- baseline in 2008 (before start of CO2 injection)
- 1st repeat in 2009 (~18,000 t of CO2)
- 2nd repeat in 2010 → scheduled in 2010
Each array shows a very contrasted response in surface.

Detectability of injected CO2 by surface receivers proven.

The two arrays show clear responses, but current injection at depth (left) shows a better detectability.
On-going:
- Performance assessment of exploiting vectorial nature (left) and frequency behaviour (right) of H & E fields measured in surface, to map resistivity changes at depth and link it to the CO2 saturation in the reservoir

Next field survey in Summer 2010:
- Second field repeat to prove ability to detect slight changes in CO2 saturation (contrast weaker than between survey 09 / baseline 08)
VI. Summary

• VERA system has been successfully installed and is operating since three years

• Resistivity logging and laboratory experiments are available and support geoelectric monitoring with structural and petrophysical information

• Pre-injection resistivity model was built based on site-specific data relating Archie’s law with standard sandstone parameters
 - low-resistivity environment (few Ωm to below 1 Ωm)
 - thin reservoir layer (max. 20 m)
 - small resistivity contrasts \rightarrow max. increase \approx300% due to partial CO$_2$ saturation

• Studies incorporating multi-phase fluid flow modelling were performed indicating a significant dependency of apparent resistivity alteration to hydraulic conductivity within the reservoir (due to time-dependent CO$_2$ distribution)

• Inversion results are in good correspondence with current information from other monitoring systems (seismic, gas monitoring, RST and DTS)\rightarrow contribute to the “big picture”, but more detailed investigations have to be conducted
VI. Lessons learned

- Necessity of improved degree of automization as well as a standard workflow for data acquisition, processing and evaluation
 - helps to overcome time-consuming manually data handling and avoids delay in delivering results to site operators / regulators

- Demand for unified models, synchronized parameters and coordinates
 - supports efficient data integration and corresponding joint interpretation
Thanks to all involved persons