Cranfield CO₂ Geothermal Field Demonstration

Barry Freifeld, Lehua Pan, and Christine Doughty
Earth Sciences Division, Lawrence Berkeley National Laboratory
Kate Hart, Steve Hostler, and Steve Zakem
Echogen Power Systems Inc.
Bruce Cutright and Tracy Terrall
Bureau of Economic Geology, University of Texas, Austin,
CO$_2$ Geothermal

- Use CO$_2$ as a working fluid instead of water.
- Take advantage of CO$_2$’s thermodynamic properties to improve system performance.
Comparing CO₂ with water as a Heat Transmission Fluid

<table>
<thead>
<tr>
<th>Property</th>
<th>Water</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry</td>
<td>Powerful solvent for rock minerals, lots of dissolution and precipitation</td>
<td>Non-polar fluid, poor solvent for rock minerals</td>
</tr>
<tr>
<td>Mobility</td>
<td>High viscosity, high density</td>
<td>Low viscosity and moderate density</td>
</tr>
<tr>
<td>Heat transmission</td>
<td>Large specific heat</td>
<td>Small specific heat</td>
</tr>
<tr>
<td>Wellbore circulation</td>
<td>Small compressibility, modest expansivity</td>
<td>Large compressibility and expansivity</td>
</tr>
<tr>
<td>Fluid losses</td>
<td>Expensive and unwanted</td>
<td>Credits for GHG mitigation</td>
</tr>
<tr>
<td>Availability</td>
<td>Widespread, limited in arid regions</td>
<td>GCS key enabling element</td>
</tr>
<tr>
<td>Power plant</td>
<td>Higher capital costs, larger footprint</td>
<td>More compact, lower capital cost</td>
</tr>
</tbody>
</table>
Cranfield CFU-31

- US$36M Investment
- 3 Wells 3.2 km deep
- Injecting CO$_2$ since Dec 2009
- BHT 127° C
- BHP 305 bar
Echogen Power Systems 25 kg/s commercial-scale CO\textsubscript{2} heat recovery system
Geothermal Reservoir Simulation

Tough 2 Simulation: T2Well/ECO2H

<table>
<thead>
<tr>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
</table>
| Conservation of mass and energy | \[
\frac{d}{dt} \int_M \mathbf{M} \cdot d\mathbf{V}_n = \int \mathbf{F} \cdot n \; d\Gamma_n + \int q^e \; dV_n
\]
| Mass accumulation | \[
M^e = \phi \sum \rho_{\beta} X_{\beta}^e
\]
| for each mass component | |
| Mass flux | \[
\mathbf{F}^e = \sum \rho_{\beta} X_{\beta}^e \mathbf{u}_{\beta}
\]
| for each mass component | |
| Energy flux | \[
\mathbf{F}^e = -\lambda \nabla T + \sum \rho_{\beta} \mathbf{u}_{\beta}
\]
| Energy accumulation | \[
M^e = (1 - \phi) \rho_s C_s T + \phi \sum \rho_{\beta} S_{\beta} U_{\beta}
\]
| Porous media | \[
\mathbf{u}_{\beta} = -k_{s,\beta} \mu_{\beta} (\nabla P_{\beta} - \rho_{\beta} \mathbf{g})
\]
| Phase velocity | \[
\mathbf{u}_{\alpha} = C_0 \frac{\rho_{\alpha}}{\rho_n} u_n + \frac{P_n}{\rho_n} u'_n
\]
| Production phase velocity | \[
u_s = \frac{(1 - S_{\alpha} C_0) \rho_{\alpha}}{1 - S_{\alpha}} u_n - \frac{S_{\alpha} \rho_{\alpha}}{(1 - S_{\alpha}) \rho_n} u'_n
\]

We solve the 2-phase momentum equation using the Drift-flux model (DFM)

- one integrated system
- two different subdomains
- viscous flow in the wellbore governed by the 1D momentum equation
- 3D flow through porous media in the reservoir is governed by a multiphase version of Darcy’s Law.
- Connected at well/reservoir interface
30-yr simulation results – Strong thermosiphon

<table>
<thead>
<tr>
<th>Mass flow rate</th>
<th>5 kg/s</th>
<th>25 kg/s</th>
<th>75kg/s</th>
<th>100kg/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellbore feature</td>
<td>7 in</td>
<td>7 in*</td>
<td>4 in</td>
<td>7 in</td>
</tr>
<tr>
<td>Injection WHP (MPa)</td>
<td>7.36</td>
<td>6.60</td>
<td>6.72</td>
<td>6.53</td>
</tr>
<tr>
<td>WHT (°C)</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>Energy (MW)</td>
<td>2.85</td>
<td>2.96</td>
<td>2.89</td>
<td>15.01</td>
</tr>
<tr>
<td>Production WHP (MPa)</td>
<td>14.46</td>
<td>16.28</td>
<td>15.41</td>
<td>14.50</td>
</tr>
<tr>
<td>WHT (°C)</td>
<td>64.06</td>
<td>106.56</td>
<td>81.83</td>
<td>88.95</td>
</tr>
<tr>
<td>Energy (MW)</td>
<td>3.34</td>
<td>3.84</td>
<td>3.58</td>
<td>18.59</td>
</tr>
</tbody>
</table>

* No heat exchange in wells
Instrument F3 well with fiber-optic DTS sensor and quartz pressure temperature sensors.
Surface Equipment of Operation and Monitoring of CO$_2$ Thermosiphon

Equipment at F3

Equipment at F1
Flow Iron – Producer to Injector
Heatric Exchangers for Cooling CO$_2$
Operations control center and systems monitoring
Venting Operations – bring up warm CO$_2$
Operational Issues – producing solids and other items

CO₂ Hydrates

Uncooperative Winds

Plugged Filter
Data Collected

• DTS fiber-optic temperature logs of F2 and F3 well
• Quartz pressure and temperature from the reservoir interval in F2 and F3
• Fluid pressure and temperature at the outlet of the F3 production tubing
• Differential pressure across the 100 μ filter unit
• Emerson Micromotion Coriolis measurement of the fluid mass flux rate and density
• Pressure and temperature at the Coriolis flowmeter exit
• Pressure and temperature downstream of the recirculation pressure control valve
• Pressure and temperature at the outlet of the heat exchangers and inlet to F1
• Set point for vent valve
• Set point for pressure control valve
Conclusions

- The thermosiphon was set up but was not self-sustaining
- Water production was higher than predicted
- A detailed analysis of the data will be required to understand the field observations
Acknowledgments

• The authors would like to thank Denbury Resources for support during the CO$_2$/Geothermal test and for more than six years of commitment in supporting research at the Cranfield Site.

• Special thanks for Sue Hovorka for her efforts in facilitating the field operations.

• This work was funded by the Assistant Secretary for Energy Efficiency and Renewable Energy, Geothermal Technologies Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Thanks for your attention. Any questions?