

CCUS as a Climate Mitigation Option

John Gale

Programme Director

IEA Greenhouse Gas R&D Programme

Resources for the Future Seminar

Carbon Capture, Utilization, and Storage (CCUS): Status, Issues,

Needs

May 24, 2017, Washington DC, USA

IEA Greenhouse Gas R&D

35 Members from 18 countries plus OPEC, EU and CIAB

What We Are:

Members set strategic direction and technical programme

Universally recognised as independent technical organisation

What do we do?

Assess Mitigation Options – Focus our R&D CCS

Resource of 300+ reports

Our Core Activities Are: Facilitate technology implementation

Facilitate international co-operation

14 international research networks

Disseminate our results as widely as possible

WMO Current Climate Status Report March 2017

- Levels of CO₂ in the atmosphere reached <u>a new high</u>
 (>400ppm)
- 2016 was the warmest year on record
 - 1.1°C above the pre-industrial period, which is 0.06 °C above the previous record set in 2015.
- Globally averaged sea surface temperatures were also the warmest on record,
 - global sea levels continued to rise,
 - and Arctic sea-ice extent was well below average for most of the year.
- Conclusion: "the influence of human activities on the climate system has become more and more evident"

https://public.wmo.int/en/media/press-release/climate-breaks-multiple-records-2016-global-impacts

Global energy-related emissions flat for third year in a row

Global energy-related CO₂ emissions

Three consecutive years of stable emissions alongside global GDP growth

Global energy-related emissions flat for third year in a row

Global energy-related CO₂ emissions

Significant and sustained decline in emissions needed for a 2°C target (2DS)

Technology mix for carbon emissions reduction in the 2DS

ETP 2015

Contribution of technology area to global cumulative CO2 reductions

A portfolio-approach is needed for a least-cost low-carbon scenario

CCUS – a key climate policy option

- The IPCC AR5 indicated CCS is a crucial technology to meet the 2°C target
 - Climate scenarios could not meet 2°C without CCS
 - The costs of meeting the 2°C will be 138% higher if CCS is not included as a mitigation option
- Post Paris CCS "lowered" the target to limit temperature rise to below 2°C target.
- CCS is expected to be an even more crucial technology if we are to achieve below 2°C target.

CCS – a key climate policy option (2)

- To go below 2°C significant reductions in greenhouse gas emissions will be required in all sectors not just the power sector.
- CCS is a key technology to achieve deep emissions cuts in the industry sector.
- "Negative emission" technologies like BioCCS will likely need to be deployed from 2030 onwards.

The technologies and sectors making the largest contributions to shifting the world from a 6C to a 2C path between now and 2050. Source: <u>IEA Energy Technology Perspectives 2015</u>.

Current status of CCUS

- CCS technology is proven and in use around the world.
- 22 large-scale CCS projects in operation or under construction globally - CO₂ capture capacity of 40 Mtpa.
- 6 projects in construction as of March 2017
 - 3 projects to be operational in 2017 & 3 in 2018
- 5 more large-scale CCS projects at an advanced stage of development planning,
 - CO₂ capture capacity of ~ 8 Mtpa.
- 11 more large-scale CCS projects are in earlier stages of planning
 - CO₂ capture capacity of ~21 Mtpa.

Source: Global CCS institute

CCUS Deployment

Power Sector

- Boundary Dam Canada
 - >1.3 captured
- NRG Parish (USA)
 - Largest capture unit to date
- Kemper County (USA)
 - Due on stream 2017
- OsakiCoolGen
 - IGCC unit operational
 - CO₂ capture 2018/19

Industry Sector's

- Natural gas processing
 - Sleipner -20 years
 - Lula, Brazil
- Hydrogen Production
 - Air Products (USA)
 - >3Mt captured
 - Quest (Canada)
 - >2Mt captured
- Steel manufacture
 - Emirates Steel now operational
- Bio-ethanol
 - IISD (USA)

Demonstration achievements

- CCS is a "proven" technology
- Growing confidence in CCS
 - It can do "what it says on the tin"
- Growing number of capture vendors
 - Post combustion capture
 - o Cansolv, Linde, MHI, Toshiba, Fluor
- Learning by doing
 - NOAK projects can be built at lower cost
- EOR gives financial support for early mover projects in regions

Role of CO2-EOR (CCUS)

- North America
 - Provided price for CO2
 - Financial support to demonstration projects
 - CO2 pipeline infrastructure plus regulation
- CO2-EOR developments
 - Offshore CO2-EOR at Lula, Brazil
 - On-shore CO2-EOR taking off in Gulf States
 - Pilot project in Saudi Arabia
 - Emirates Steel first mover project in UAE
 - China first project (Yangcheng Petroleum) in 2019/2020

Next steps

- Progress in CCUS deployment has been significant and cost reductions observed from learning by doing
- Most early CCUS projects have required government support
 - Grants/loans for capital investment
 - Taxes, storage credits etc., towards operational costs
- Government support will still be needed to help drive down costs and/or make business model attractive to industry.
- Ultimately we need to create business models that allow projects to be self financing
 - No "one fits all solution"
- Knowledge transfer from early projects needed
- Proving the storage resource around world is essential
- Build infrastructure to support expanded deployment of CCUS.
- Further R&D to drive down costs

www.ieaghg.org

www.linkedin.com/groups/IEAGHG-4841998

twitter

https://twitter.com/IEAGHG

www.facebook.com/pages/IEA-Greenhouse-Gas-RD-Programme/112541615461568?ref=hl