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ASU design considerations 
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• Process selection and optimisation 
– Power vs. capital costs (€ to save 1kW) 
– Purity requirements (high or low purity oxygen) 
– Co-products (nitrogen or argon, gas or liquid) 
– Compression optimisation and integration 

• Manufacturing strategy 
– Transport of components to site (e.g. columns) 
– Reducing construction / erection costs and risks 

• Operability 
– Fit with customer’s use patterns 

– Turndown / ramping / storage 
– Advanced control capabilities (e.g. MPC) 

• Reliability 
– Extra high reliability design? 
– Liquid backup 
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Air Products ASU train size development 
 Market drives ASU scale-up 

 Proven 70% scale-up 

 Quoting 5000+ metric t/d  today 
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ASU Equipment - machinery and drives 
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• Significant part of ASU cost (capital and power) 
– Critical to optimise efficiency vs. capital cost 
– Improved efficiency when power value is high 

• Reach referenced machinery limits as train size increases 
– Can use multiple trains for a single cold box 

• Centrifugal or axial air compressors 
– Centrifugal up to ~5000 tonnes/day O2   
– Axial up to ~8000 tonnes/day O2 

– Blast furnace blower technology 
– GT derived units will be even larger 

• Electric Motor or Steam Turbine drive 
– Motors simplify operation but may have starting issues 
– Steam turbines more efficient for power generation than 

mechanical drives – balances extra electrical losses 



ASU equipment - front-end  development 

• Packing selection for DCAC and CWT 
– Reduced pressure drop 
– Minimise diameter 

• New adsorbent development 
– Increased capacity (smaller vessels) 
– To remove additional contaminants 

(e.g. N2O) 
– Lower cost (cost/performance ratio) 

• Regeneration cycle development 
– Reduced energy input 
– Lower temperature regeneration 

• Reduced pressure drops when power 
value is high 



ASU cold box equipment development 

• Main heat exchanger development and 
optimisation 

– Improved heat transfer 
– Lower pressure drop 
– Larger core sizes 
– Lower cost suppliers 

• Distillation column development 
– Cryogenic distillation test rig 
– High capacity structured packing 
– Cost-effective internals 
– Smaller column diameters 
– Reduced pressure drop 

• Reboiler development and safety 
– Safe downflow reboiler design 
– Efficient thermosyphon reboiler design 

 



ASU cycle development and selection 
• Pumped Liquid Oxygen (PLOX) (Internal Compression (IC)) 

– Replaces oxygen compressor with booster air compressor 
– Can also pump other products (argon, nitrogen) 

• Pure argon by distillation (<1ppm O2)  
– Replaces deoxo, avoids H2 consumption 

• Liquid swap cycles for variable oxygen demand 
– Stored liquid oxygen swapped with liquid air or nitrogen 

• Advanced cycles for low purity oxygen (<~97.5%) 
– Save power with multiple columns and/or reboilers 
– Can make some high purity O2 or Ar at low recovery 

• Integration with other processes 
– Pressurised nitrogen (e.g. GT) and heat integration 
– Nitrogen integration may allow elevated column pressures 

 



Liquid swap for flexible oxygen supply 
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• Liquid storage decouples column load and oxygen supply rate 
• Can deal with medium term oxygen flow variations 

 Liquid oxygen from 
columns is boiled by 
condensing air feed 

 Inject LOX, store liquid air  
• Increase GOX supply at 

same column load or 
• Maintain GOX supply 

with reduced power 

 Store LOX, inject liquid air  
• Reduce GOX supply at 

same column load or  
• Maintain GOX supply 

and increase power 
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ASU advanced cycle comparison 
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• Five low purity cycles compared (in oxyfuel study) 
1) Three column cycle (IEA GHG report 2005/9) 
2) Conventional double column cycle 
3) Dual reboiler cycle 
4) Elevated pressure three column cycle 
5) Elevated pressure dual reboiler cycle   

• Cycles optimised for comparison (capital vs power) 
• Results given on same basis as Darde et al. (2009) 

– Oxygen separation shaft power at ISO conditions 
• Intercooled compression and no heat integration 
• With and without pressurised nitrogen coproduct 
• More detail in our paper in IJGGC oxyfuel edition 



ASU power calculation 
• Overall power can be expressed as sum of conceptual processes 

– Independent of actual process 
 1) Separation 

– Separate air to oxygen and nitrogen at atmospheric pressure 
 2) Product compression 

– Compress products to required pressures 
 3) Product liquefaction 

– Cool and liquefy products if required 
• Powers depend on ambient conditions, power/capital evaluation, 

operating conditions compared to design point 
• Powers can be quoted at different points – shaft power, electric 

power at motor terminals, at incomer, process users only etc. 
• This Comparison is Oxygen Separation Shaft Power only 

– Excludes compression, liquefaction, electrical losses, cooling 



Oxygen Specific Compression Power 
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• Typical values at ISO conditions, based on total flow of oxygen stream 

 



ASU Cycle Comparison Results 
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 Without gaseous nitrogen (GAN), 
three column cycle is best 
– 158 kWh/t (base) 

 With GAN, three column cycle 
has lowest gross power  - 
increases dramatically for 
elevated pressure (EP) cycles as 
they make more GAN 

 If GAN can be used (crediting 
avoided compression power) EP 
cycles are best 
– 3 Col (LP):   147 kWh/t (-7%) 
– 2 Reb (EP): 128 kWh/t (-19%) 

 If GAN has no use and power is 
recovered with expander  (no 
external heat), three column 
cycle is still best 
– 157 kWh/t (-1%) 
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Three column, low purity cycle 

Air cooling 
and 

purification GANGOX
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LIN

• Air feeds at 3 and 5 bar(a), optional GAN at 2.5 bar(a), pumped LOX version 
• High, medium and low pressure columns 
 



Low Purity “Reference ASU” 
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Size TPD O2  Main Air Compressor options 

3,000 – 4,000  Centrifugal 1 or 2 train or axial 1 train 
4,000 – 5,500  Centrifugal 1 or 2 train or axial 1 train 
5,500 – 7,000  Centrifugal 2 train or axial 1 train 
7,000 -10,000  Centrifugal or axial 2 train 

 Designs developed for a 
scalable reference plant 

 Based on three column cycle 

 Column diameters within 
manufacturing capabilities 
(referenced to 7000 TPD) 

 Up to ~25% of oxygen 
possible at high purity 
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Typical O2 demands for 4 million tonne per 
year hot rolled coil integrated steelworks 

Technology Oxygen Flow / TPD Oxygen Pressure / 
bara 

Oxygen Purity / 
mol % 

Steelmaking 1000 30 (for gas storage) ~99.5 

Blast Furnace 
(some enrichment) 

750 3-8 >90 

BF Plus 2500 3-8 >90 

Oxy Blast Furnace, 
Top Gas Recycle 

3500 3-8 >90 

COREX/FINEX 8000 3-8 >90 

• Some nitrogen, argon and liquid back-up are also needed 
 

 



Typical Modern Steelworks ASU 

• 1500-2500 TPD Oxygen 
• Moderate power evaluation 
• High purity oxygen (99.5%+) with argon (high recovery) 
• Pumped liquid oxygen supply at two pressures 

– ~40-50% at medium pressure (MP) for blast furnace 
– Rest at high pressure (HP) for steelmaking 

• Small liquid production for backup 
• Some utility nitrogen (typically << oxygen demand) 
• Liquid swap scheme for peak shaving 

 



Steelworks ASU – for all future O2 demand 

• >3500 TPD Oxygen 
• High power evaluation (due to cost of CO2 emissions) 
• Dual purity oxygen (99.5%+ and ~95%) with some argon 

production (low recovery) – advanced cycle 
• Pumped liquid oxygen supply at two pressures 

– ~80-90% at medium pressure (MP) for blast furnace 
– Rest at high pressure (HP) for steelmaking 

• Small liquid production for backup 
• Some utility nitrogen production 
• Possible additional nitrogen demand for GT integration 
• Liquid swap scheme for peak shaving 



Steelworks ASU – for additional O2 only 

• >2000 TPD Oxygen 
• High power evaluation (due to cost of CO2 emissions) 
• Low purity oxygen (~95%), no argon production 

– Ideally suited to advanced cycle 
• Pumped liquid oxygen supply at medium pressure only 
• Possible liquid production for backup 
• Some utility nitrogen production 
• Possibility of elevated pressure cycle with nitrogen for 

gas turbine integration 
 



Oxygen specific power comparison 
ASU type Press.  

 
 
bar 

Purity  
 
 
% 

Specific 
sep. 
power  
kWh/t 

Auxiliaries 
and losses   
 
kWh/t 

Comp. 
power   
 
kWh/t 

Total 
specific 
power  
kWh/t 

Total 
specific 
power  
kWh/Nm3 

Old ASU 30 99.5 250 25 110 385 0.55 

Modern ASU 30 99.5 230 20 100 350 0.50 

5 99.5 230 20 50 300 0.43 

Dual purity  30 99.5 165 15 100 280 0.40 

5 95 160 15 50 225 0.32 

Low purity 5 95 160 15 50 225 0.32 

EP, N2 
Integrated 

5 95 130 10 50 190 0.27 

• Total electrical power at HV incomer 
• At design point at ISO conditions with no coproducts 



Power comparison of ASUs for iron & steel 
• Powers depend on multiple factors – powers given are 

– At ISO conditions  
– For steady operation at design point 
– With no coproducts 
– For all consumers including cooling & adsorber regeneration 
– At HV incomer 

• Coproduct powers must be added, e.g. LOX for backup, LAr and 
30 bar N2 at 5% of O2 flow could add 28kWh/t (0.04kWh/Nm3) O2 

• High power value means lower power but increased capital cost  
• Low purity process can provide some high purity O2 efficiently 

– At little more than low purity separation power 
• Future ASU could halve oxygen power compared to old ASU! 

– High vs low power value (15%) 
– Medium pressure vs high pressure product (13%) 
– Low purity (or dual purity) vs high purity oxygen (13%) 
– Elevated pressure with GT N2 integration vs low pressure (10%) 
– As low as190 vs 385 kWh/t (0.27 vs 0.55 kWh/Nm3) 
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Conclusions 
• Oxygen demand increases in steelworks with CO2 capture 
• Important to understand ASU possibilities in evaluation of CCS 
• Increased demand is at low purity and moderate pressure 
• ASU can provide oxygen at multiple pressures to save power 
• Low purity enables use of advanced low power cycles 

– Also work for dual purity and low argon recovery 
– Specific power for high purity little more than for low purity 

• Integration of ASU with power generation is beneficial 
– Nitrogen integration with gas turbine allows EP ASU cycle 
– Steam cycle condensate preheat in compressor coolers 

• ASU scale-up is possible to 10000 TPD in a single cold box 
– At this size two machinery trains are needed 

• Power consumption comparisons need care 
– Ambient conditions, operating modes, what’s included 
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