

Development of the HIsarna process

Alternative Ironmaking technology with CO₂ capture potential

Koen Meijer Christiaan Zeilstra Tata Steel Research, Development & Technology

Industry CCS Workshop, VDEh, Düsseldorf 8 - 9 November 2011

Content

- 1. Sustainability
- 2. The ULCOS project
- 3. HIsarna technology
- 4. HIsarna and CCS
- 5. HIsarna development
- 6. First Campaign
- 7. Preliminary results
- 8. Conclusions

1. Sustainability

Steel industry strives for continuous improvement of their environmental performance and sustainability

- Steel is **100** % recyclable
- New steel qualities improve sustainability of our costumers products
- Steel industry is committed to ongoing energy saving and reduction of CO₂ emission
- Steel accounts for 5 % of man-made CO₂

1. Sustainability

1.1. Challenge

Growth

World steel consumption will double in 2050

Sustainability

Ambition to cut CO₂ emissions by 50 % in 2050

1. Sustainability

1.2. Need for breakthrough developments

- Focus on Ironmaking (80 90 % of CO₂)
- Present operation close to "Best Practice"
 - \rightarrow Further energy saving will <u>not</u> deliver long term target
 - → Breakthrough development needed

Objective:

50% reduction in CO₂ emissions per ton of steel from iron ore based steel production by 2050

- Globally the largest Steel Industry project on Climate Change
- Core partners: ArcelorMittal, Tata Steel, ThyssenKrupp, Ilva, Voestalpine, LKAB, Dillingen/Saarstahl, SSAB, Rautaruukki
- Co-partners: over 40 Institutes, Universities, Engineering companies, etc
- Budget: **70 M€**
- Duration phase I: 2004 2010

2.1. ULCOS subjects

- 1. Efficiency of carbon use *New and improved processes*
- 2. Replacement of fossil carbon Biomass Hydrogen Electricity
- 3. Capture

2.2. Ironmaking process selection

2.2. Ironmaking process selection

3. HIsarna technology

3.1. Comparison with the BF route

coal

3. HIsarna technology

3.1. Comparison with the BF route

3. HIsarna technology

Melting cyclone technology

Melting and partial reduction of fine iron ores

- "2 $Fe_2O_3(s) + 2 CO(g) \rightarrow 4 FeO(I) + 2 CO_2(g)$ "
- The cyclone product is a molten mixture of Fe₃O₄ and FeO (~ 20 % reduced)
- Pure oxygen is injected to generate the required **melting** temperature
- The fines are **separated** from the gas by centrifugal flow of the gas

3. HIsarna technology Smelter technology

Post combustion of smelter gas

- Utilisation of the post combustion (CO \rightarrow CO₂) heat is essential for the process
- The heat of post combustion is captured by the slag splash that circulates through the freeboard
- This splash also **protects** the cooling panels from the post combustion flames

3. HIsarna technology Smelter technology

"2 FeO(I) + 2 C(s) \rightarrow 2 Fe(I) + 2 CO(g) "

- The iron oxides in the slag are reduced at the slag/metal interface
- Granular coal injection supplies the carbon and creates intense mixing
- Due to this mixing the FeO in the slag is relatively low

Final reduction on slag/metal interface

3. HIsarna technology Benefits of the HIsarna process

Environmental:

- 20 % reduction of CO₂ per ton steel product
- Well suited for CO₂ storage (nitrogen free off gas)
- 80 % reduction with CO₂ storage
- Substantial reduction of other emissions (dust, NOx, SOx, CO)

Economical:

- Low cost raw material
- Reduced CAPEX

4. HIsarna and CCS

4.1. Why an attractive combination?

HIsarna flue gas:

- Oxygen based process with Nitrogen free flue gas
- All ironmaking flue gases at a single stack (85 % of CO₂ from integrated site)
- Fully utilised gas, (almost) no remaining calorific value

TATA STEEL

4. HIsarna and CCS

4.3. Flowsheet with CCS

4. HIsarna and CCS

4.4. Gas quality requirements

- Technical requirements
 - Corrosion
 - Hydrate formation
 - Compression energy
- Legal requirements
 - European directive: "Overwhelmingly CO₂"
 - Dynamis recommendation: $CO_2 > 95.5 \%$
- For HIsarna a slightly less strict CO₂ concentration would be very beneficial. According to the directive there is room for negotiation.

4.5. Dynamis recommendation

Component	Concentration	Limitation			
H ₂ O	500 ppm	Technical: below solubility limit of H ₂ O in CO ₂ . No significant cross effect of H ₂ O and H ₂ S, cross effect of H ₂ O and CH ₄ is significant but within limits for water solubility.			
H ₂ S	200 ppm	Health & safety considerations			
со	2000 ррт	Health & safety considerations			
O ₂ ²	Aquifer < 4 vol%, EOR 100 – 1000 ppm	Technical: range for EOR, because lack of practical experiments on effects of O ₂ underground.			
CH42	Aquifer < 4 vol%, EOR < 2 vol%	As proposed in ENCAP project			
N_2^2	< 4 vol % (all non condensable gasses)	As proposed in ENCAP project			
Ar ²	< 4 vol % (all non condensable gasses)	As proposed in ENCAP project			
${\rm H_2}^2$	< 4 vol % (all non condensable gasses)	Further reduction of H ₂ is recommended because of its energy content			
SOx	100 ppm	Health & safety considerations			
NOx	100 ppm	Health & safety considerations			
CO ₂	>95.5%	Balanced with other compounds in CO ₂			

5. Development

5.1. Site construction

- Suitable location (former de-S plant) at Tata Steel IJmuiden
- Project execution:
 - Tata Steel Engineering
 - Tata Steel Research
 - European steelmakers
 - European equipment suppliers
 - Rio Tinto

6. The first campaign (A.)

- The plant was operated from April 18 to June 11
- The team:
 - Tata Steel Operations
 - Tata Steel Research
 - ULCOS partners
 - Rio Tinto
- 4 start-ups took place

6. The first campaign (A.)

	Week 16	Week 17	Week 18	Week 19	Week 20	Week 21	Week 22	Week 23
	April-18	April-25	May-2	May-9	May-16	May-23	May-30	June-6
Heat-Up Test A-1 Plant improvements Test A-2 Test A-3 Test A-4			•		•		•	

- First start-up failed
- Various improvements required
- 3 successfull start-ups followed

First metal tap at May 20th (test A-2)

7. Results first HIsarna campaign

- After many "teething problems" the plant and all it's support systems were finally operational
- 3 successfull start-ups were carried out
- 60 % of the design capacity was achieved
- Available data indicates that process works as expected but more operating hours are needed to prove this
- The number of operating hours was below expectation

7.1. HIsarna and CCS likely?

Test results relevant for CCS:

- Use of 100 % oxygen successful
- High gas utilisation partly achieved
 - Achieved: 78 % post combustion at top of cyclone
 - Target: > 85 % post combustion
- Nitrogen in off gas during tests was 17 % in dry gas
 - Nitrogen used for coal and lime injection (35 % of N₂)
 - Air used for iron ore injection (60 % of N₂)
 - Camera purge etc. (5 % of N₂)
- For industrial applications alternative iron ore carrier gas considered
- Test results indicate that combination with CCS is attractive

8. Further campaigns

Pilot plant experiments

	2010	2011	2012	2013
Construction pilot plant				
Commissioning		_		
Campaigns A.		—		
В.			—	
C.				—

Industrial scale demonstration	2014 - 2018
Industrial implementation	2020

9. Conclusions

- With the ULCOS and HIsarna project the European steel industry is proactively approaching the Climate Change issue
- In the HIsarna project knowledge end experience of steelmakers and equipment suppliers from all over Europe is brought together
- HIsarna is a high risk/high reward innovation that can potentially have a strong environmental and economical impact on the steel industry
- Environmental impact:
 - Without CO₂ capture and storage **20** % reduction
 - With CO₂ capture and storage **80** % reduction
 - Strong reduction of other emission (dust, CO, NOx, SOx)
- No quick fix: HIsarna not ready for industrial implementation before 2020 CCS available before 2020?

Aknowledgement

The HIsarna project is made possibly with the support of:

- 9 steelmakers
- Leading equipment Engineers and Suppliers
- Rio Tinto/HIsmelt
- EU FP6
- RFCS
- Dutch Ministery of Economic Affairs

