One ASU Alternative: O_2-CO_2 Production for Oxyfuel Combustion Using Chemical Looping Method

Yuan-yuan WENa, Teng ZHANGa, Zhen-shan LIa, Ning-sheng CAIa. *

aKey laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China

Keywords: Oxyfuel Combustion; Oxygen Production; Co-based Oxygen Carrier; Cu-based Oxygen Carrier

Abstract

As one promising option for CCS, oxyfuel combustion is developed and demonstrated around the world. But the significantly high investment cost and energy consumption of ASU is one challenge to the promotion of oxyfuel combustion. The atmosphere in oxyfuel boiler is O_2-CO_2 mixed stream with 20~30% O_2 concentration, which is mixed by recycled CO_2 and pure oxygen produced by ASU. So it is possible to reduce the cost of ASU by produce the O_2-CO_2 mixture directly using chemical looping method. The Co-based and Cu-based oxygen carriers are applicable in this system and the two kinds of oxygen carriers made by impregnation were studied on TGA and fluidized bed. According to the experiment results, the Co-based oxygen carrier showed high reaction characteristics and stability, and a continuous stream of oxygen-enriched carbon dioxide with oxygen concentration higher than 20% is produced in two parallel fixed-bed reactors operated in a cyclic manner using Co-based oxygen carrier. Comparing with Co-based oxygen carrier, the Cu-based oxygen carrier was more economically feasible, but it had a sintering problem at high temperatures which lead to a rapid decline of reaction ability, so several modification methods were researched to develop the reaction stability of Cu-based oxygen carrier. Both of the Co-based and Cu-based oxygen carriers showed potential for applications as an alternative of ASU for oxyfuel combustion.

* Corresponding author. Tel.: +86-10-62789955; fax: +86-10-62770209.

E-mail address: cains@tsinghua.edu.cn