Oxy-Fired Tangential Boiler Development and Large-Scale (15 MWth) Validation

Armand Levasseur
David Turek, James Kenney, Carl Edberg, Shin Kang, Patrick Mönckert, Frank Kluger
Alstom Power

2nd International Oxy-Combustion Conference
Yeppoon, Queensland, Australia
September 14, 2011
The Alstom Group: A Worldwide Leader in Power Generation

• Clean Power
 - N°1 in integrated power plants
 - N°1 in air quality control systems
 - N°1 in services for electric utilities

• CO₂-Free & Renewables
 - N°1 in hydro power
 - N°1 in conventional nuclear power island
 - Recent acquisition of solar and wind

• Carbon Capture
 - Post-Combustion
 - Oxy-Combustion

Full Power Systems Portfolio and Technology Mix
Oxy-Combustion Technology - Why Oxy?

- Cost Competitive (with other CCS, Wind, Solar, Biomass)
- Reliability / Low Development Risk: Adapts Conventional Components
- New and Retrofit Applications
- High CO₂ Capture Rates (>90%)
- Near Zero Emissions
- CO₂ “Ready” Approach
- Potential for O₂ Production Cost Reduction
- Scale-up to Large Commercial Sizes (1000 MWₑ)
Alstom Oxy-PC Combustion Technology Development Steps

Reference Design Studies 1999

Lab Scale <1 MWth

Large Pilot Plants 15-30 MWth

Demonstration 150-400 MWe

Commercial 600-1100 MWe

Scale-Up 2008

2014-2016

<2020
15 MWth Oxyfuel Pilot Plant: Alstom Boiler Laboratories, Windsor, CT

15 MWth Boiler Simulation Facility -
Multi-burner, Tangentially-fired

Flexible operating conditions
- air & oxy-firing, gas recycle configuration, oxygen injection, firing system design

Generation of detailed design and performance data
- combustion, emissions, heat transfer, deposition, corrosion
Oxy T-Fired Boiler Development Project

Project Team:
- Alstom Power
- DOE NETL
- ICCI
- NDIC
- Advisory Group

10 Utility Members
- Ameren
- ATCO
- Dominion Energy
- Great River Energy
- Luminant (TXU)
- LCRA and Austin Energy
- MidWest Generation
- NB Power
- OG&E
- Vattenfall

Project Start: Oct 2008 Duration: 5 Yrs

<table>
<thead>
<tr>
<th>Task Description</th>
<th>DOE FY09 Period 1</th>
<th>DOE FY09 Period 2</th>
<th>DOE FY09 Period 3</th>
<th>DOE FY09 Period 4</th>
<th>DOE FY09 Period 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task 1 - Project Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 2 - Bench Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 3 - Screening Evaluations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 4 - 15 MWth Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Test Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 Test Preparations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 Facility Shakedown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 Campaign 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5 Campaign 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6 Campaign 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7 Campaign 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8 Campaign 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9 Campaign 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 5 - Test Data Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 6 - Model Simulations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 7 - Oxy Guidelines</td>
<td>Milestone Completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 8 - Oxy Boiler Demo Design</td>
<td>Milestone Scheduled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Task 9 - Commercial Ref. Designs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- DOE FY09 Period 1: Q1, Q2, Q3, Q4
- DOE FY09 Period 2: Q1, Q2
- DOE FY09 Period 3: Q1, Q2, Q3, Q4
- DOE FY09 Period 4: Q1, Q2, Q3
- DOE FY09 Period 5: Q1

- 60% Completed
- 30% Completed
- 100% Completed
- 85% Completed
- 55% Completed
- 25% Completed
- 15% Completed
Develop and validate an oxyfuel T-fired boiler system as part of commercially attractive CO₂ capture solutions.

- Design and develop an oxyfuel firing system for T-fired boilers
- Evaluate the performance in pilot scale tests at 15 MWth testing
 - operation, combustion, heat transfer, pollutants, ash deposition and corrosion
- Evaluate and improve engineering and simulation tools for oxy-combustion by applying detailed test data
- Develop design guidelines
- Develop the design, performance and costs for a demonstration-scale oxyfuel boiler and auxiliary systems
- Develop the design and costs for both industrial and utility commercial-scale reference oxyfuel boilers
Accomplished

- Process and CFD Screening Completed
- Modifications For Oxy-Firing Completed
- Campaign 1 Testing Completed Sept. 2009 – Subbituminous coal
- Campaign 2 Testing Completed Feb. 2010 - Low S Bituminous coal
- Campaign 3 Testing Completed April 2010 - High S Illinois Bituminous coal
- Campaign 4 Testing Completed Oct. 2010 - North Dakota Lignite
- Campaign 5 Testing Completed August 2011 - Schwarze Pumpe Lignite

Next

- Campaign 6 Testing of 2nd Generation Concepts
- Tools & Modeling Refinement and Validation on-going
- Design guidelines On-going
- Reference & Demo designs On-going
Oxy-PC Boiler
Development areas investigated

- Heat transfer: radiative / convective
- Oxy tangential firing system design
- Oxygen Injection
- Effect of coal quality
- Flue gas recycle
- Mill adaptation / integration
- Operation/load change: dynamic response

Control Logics & Safety
- Corrosion: high temperature, low temperature
- Fouling & Slagging
- SCR adaptation
- Air in-leakage
- Gas pre-heater adaptation
- Acid dew point
- Excess O2
- Emissions
- Ash Properties

Comprehensive Test Program Addresses Several Areas
15 MWth Oxyfuel Pilot Plant: Switch from air to oxy firing demonstrated

Transitions Air-to-Oxy or Oxy-to-Air about 30 mins
Changes in Oxy-Firing Gas Compositions – Illinois High Sulfur Coal

Significant Increase in SO2 even with sulfur capture from recycle
Similar SO_3 Conversion Rate As Air Firing - Economizer Outlet Measurements in BSF

Illinois Bituminous Economizer Outlet SO_3 results

![Graph showing SO2 vs SO3 conversion rates for Illinois Bituminous fuel. The graph includes data points for Air, Oxy w/o SOx control, and Oxy w/SOx control. The y-axis represents SO3 ppmv, and the x-axis represents SO2 ppmv. The graphs show conversion rates at 1%, 2%, and 3%.](image)

North Dakota Economizer Outlet SO_3 results

![Graph showing SO2 vs SO3 conversion rates for North Dakota fuel. The graph includes data points for Air, Oxy w/o SOx control, Oxy hot FGR, and Oxy w/SO3 spike. The y-axis represents SO3 ppmv, and the x-axis represents SO2 ppmv. The graphs show conversion rates at 1%, 2%, and 3%.](image)

Similar SO_2 to SO_3 conversion rates

ALSTOM 2011. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Recycled SO$_3$ does not impact outlet emissions
NOx Emissions During BSF 15MWt Testing

Main Burner Zone Stoichiometry

Air firing NOx consistent with field; NOx during Oxy firing more than 50% less
15 MWth BSF furnace mapping

Probe Mapping Measurements

Gas Temperatures
- Total Incident
- Radiant

Heat Flux:
- Total Incident
- Radiant

Gas Species:
- O₂
- CO
- CO₂
- SO₂
- H₂O
- Tₐ₁₉

Diagram:

- Front Wall, East
- Wingwall
- U-Tubes
- Banks 1 & 2
- to Economizer

- Plane 273 (HFOP)
- Plane 180
- Plane 141
- Plane 66
- Plane 42

- Side View
- UOFA
- LOFA
- W, N
- W
- Detailed mapping planes
- Deposition probes (3)

- Heat flux panels (4)
Furnace WW heat flux – gas recycle rate impacts

Ability to control heat flux magnitude with recycle rate
Reduced recycle rate shifts heat duty to furnace
A reduced recycle rate shifts more heat absorption to the furnace

In each case, a global O₂ of ~26 -28% gives the same furnace absorption as air firing in the BSF.
The heat flux profile can also be controlled by adjusting the O_2 injection.

- Oxygen was varied between the overfire and windbox locations.
- Oxygen was varied among the different windbox compartments.

15 MW t BSF – High S bituminous
The oxy-fired heat flux profile can be controlled to match the air fired
Oxy Reference Plant and Demonstration Boiler Designs

- Application of test results and design tools
- Development of reference oxy-fired utility boiler design for future market
- Development of a full-scale oxy-fired boiler design for demonstration opportunities
- Optimization, detailed design, performance assessment and costing
Oxy-firing integrated approach: Reference plant design

- Numerous parameters impacting performance and cost – Integration is key (process, thermal, operation, arrangement)
- Globally optimize cost of electricity
- Balance trade-offs between main subsystems (performance and costs)
- Determine specification for the new subsystems
- Power plant operation and control
- Optimize arrangement and minimize footprint

An integrated approach minimizes the cost of electricity
UK Oxy CCS Demo Project

- A new modern 426 MW Gross Oxyfuel Power Plant
- PC Boiler; ultra-supercritical conditions
- Clean power generation with the entire flue gas treated to capture 2 MTA CO$_2$
- Biomass co-firing leading to zero CO$_2$ emission
- Located at the existing Drax Power Station Site at Selby, North Yorkshire
- A part of Yorkshire/Humber cluster for transport and offshore storage of CO$_2$
- FEED under way
- NER funding application under evaluation

Project Promoters

ALSTOM DRAX ASU NATIONAL GRID

Oxyfuel Power Plant CO$_2$ Transportation & Storage

Largest Oxyfuel CCS Demo
Concluding Remarks

• No technical barriers - Combustion, emissions, and thermal performance can be controlled to similar levels as air firing.

• An oxy boiler design does not require major changes.
 - For oxy-combustion retrofit, only minor pressure part changes
 - For new applications, additional control under oxy-firing may be used improve oxy-fired boiler performance and costs.
Concluding Remarks

- Detailed test data from this project and other Alstom R&D programs is being applied to
 - refine and validate design tools and design procedures.
 - support overall oxy plant integration and optimization efforts
 - develop and optimize designs for demonstration opportunities and future commercial plants
Clean Power Today!™

Technology Mix
Production Efficiency
Carbon Capture & Storage

We are shaping the future
Disclaimer

Parts of this document were prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This document was also prepared with support, in part, by grants made possible by the Illinois Department of Commerce and Economic Opportunity through the Office of Coal Development and the Illinois Clean Coal Institute. Neither Alstom Power, nor any of its subcontractors, nor the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development, the Illinois Clean Coal Institute, nor any person acting on behalf of either:

(A) Makes any warranty of representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights; or

(B) Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method or process disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring; nor do the views and opinions of authors expressed herein necessarily state or reflect those of the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development, or the Illinois Clean Coal Institute.

Information disclosed herein is furnished to the recipient solely for the use thereof as has been agreed upon with ALSTOM and all rights to such information are reserved by ALSTOM. The recipient of the information disclosed herein agrees, as a condition of its receipt of such information, that ALSTOM shall have no liability for any direct or indirect damages including special, punitive, incidental, or consequential damages caused by, or arising from, the recipient’s use or non-use of the information.