First results of the 2.25 t/h post-combustion CO$_2$ capture pilot plant of ENEL at the Brindisi coal power plant with MEA from 20 to 40 %wt

P.A. Bouillon (IFPEN)
E. Lemaire (IFPEN)
A. Mangiaracina (ENEL)
C. Tabasso (ENEL)
Agenda

- IFPEN & ENEL's CCS strategies
- Pilot Plant Presentation
- MEA 30%wt tests
- MEA 40%wt preliminary results
- Conclusion
ENEL - Post Combustion CO$_2$ Capture Project

ZEPT - Zero Emission Porto Tolle

Project goal

To retrofit one 660 MW$_{e}$ coal fired unit, of Porto Tolle power station, with CO$_2$ post combustion capture equipment and start CO$_2$ underground storage in an off-shore saline aquifer by 2015

Project supported by the EEPR grant agreement with European Commission
ZEPT- Zero Emission Porto Tolle

Lab
- Advanced diagnostic
 - Lab pant (Brindisi)
 - Flue gases: 2 Nm³/h
 - CO₂: 0.4 kg/h

Pilot
- Pilot plant Brindisi Sud
 - Flue gases: 10,000 Nm³/h
 - CO₂: 2500 kg/h

Demo
- Porto Tolle
 - Flue gases: 810,000 Nm³/h
 - CO₂: 180,000 kg/h

Mathematical modelling
- Process testing
- Analytical methodologies development
- Performance testing
- Emissions measurement
- Innovative concepts testing
- Development and testing modelling tools

Commercial application
- Pre-commercial demo
- Technology scale-up
- Know how transfer to Engineering & Construction → costs and risk reduction
IFP Energies nouvelles

5 complementary strategic priorities

- Renewable energies
- Eco-friendly production
- Innovative transport
- Eco-efficient processes
- Sustainable resources

ENERGY DIVERSIFICATION

REDUCING THE ECOLOGICAL IMPACT

ENERGY EFFICIENCY

SECURING SUPPLIES

DECARBONATION

CLIMATE CHANGE: CUTTING CO₂ EMISSIONS

SUSTAINABLE DEVELOPMENT

Producing fuels, chemical intermediates and energy from renewable sources
Producing energy while mitigating the environmental footprint
Developing fuel-efficient, environmentally-friendly transport
Producing environmentally-friendly fuels and chemical intermediates from fossil resources
Providing environmentally-friendly technologies and pushing back the current boundaries of oil and gas reserves
IFPEN solutions for CO$_2$ capture

- **1st generation process**: HiCapt+™
 - MEA at 40% wt improved with inhibitors

- **2nd generation process**: DMX-1™
 - Needs for a collaboration for an industrial pilot
 - 2013-2015: pilot test campaign

- **3rd generation process**...
Agenda

- IFPEN & ENEL's CCS strategies
- Pilot Plant Presentation
- MEA 30%wt tests
- MEA 40%wt preliminary results
- Conclusion
Pilot plant presentation
Pilot plant presentation

Brindisi Federico II coal fired power plant

4 units x 660 MWe

Site of CO₂ capture pilot plant
Pilot plant presentation – Project planning

- Engineering phase
 - July 2008 – May 2009

- Construction phase
 - March 2009 – June 2010

- Start-up phase
 - June 2010 – July 2010

- Validation phase: MEA 20%wt
 - September 2010

- MEA 30%wt & 40%wt campaigns
 - November 2010 – May 2011
Pilot plant presentation – Project planning

- Mid 2010: start-up of the Brindisi's CCS pilot plant
- End 2010: Start of first test campaign

~ 2 years between start of engineering & start up of the unit
Pilot plant presentation – Construction
Pilot plant presentation – Construction
Pilot plant presentation – Construction
Pilot plant presentation – Characteristics

Flue gas conditioning

- Flue gas Blower
 - Flue gas flowrate: 3,000 to ~14,000 Nm3/h

- DeSOx unit
 - Spray tower
 - SO$_2$ inlet up to 400 mg/Nm3
 - Efficiency min: 95%

- WESP
 - 2 series / parallel WESP
Pilot plant presentation – Characteristics

CCS unit – Main equipments

- **Absorber**
 - i = 1 500 mm / H_{LT} = 45 000 mm
 - packing: 3 x 7,35m M250X + 1 x 4m M250X
 - 3 stages solvent inlet

- **Stripper**
 - i = 1 300 mm / H_{LT} = 31 000 mm
 - packing: 3 x 3,70m iRing 50 + 1 x 3m iRing 50
 - Reboiler: Kettle type ~ 1 to 3 MWth

- **Solvent / Solvent cross heat exchanger**
 - Plates type
Pilot plant presentation – Characteristics

CCS unit – annex equipments

- **Filtration section**
 - 2 mechanical filters
 - 1 carbon filter 15 m³

- **Solvent Storage**
 - 2 x 100m³ tanks
 - Solvent hold up ~ 65 m³

- **Cooling water section**
 - External loop sea water
 - Industrial Cooling water loop
 - Sea water / cooling water heat exchanger (TEMA)
Agenda

- IFPEN & ENEL's CCS strategies
- Pilot Plant Presentation
- MEA 30%wt tests
- MEA 40%wt preliminary results
- Conclusion
MEA 30%wt campaign

- 4 months campaign
 - November 2010 - February 2011

- Parametric studies – Process optimization
 - Regeneration pressure
 - Lean loading

- Aspen+ Model validation
 - L/G variations – hydrodynamic correlations
 - Packing height – kinetics equations

- Long run test = 500 hours
 - Performances validation
 - Emission measurements
 - Solvent degradation
MEA 30%wt campaign – Performance test

![Graph showing flue gas flowrate and CO2 levels over time.](image)

Date - heure

Flue gas flowrate (Nm³/h)

- Flue gas flowrate
- CO2 in
- CO2 out

CO2 (%vol.)

- Flue gas flowrate
- CO2 in
- CO2 out
MEA 30%wt campaign – Performance test

Date - heure

CO₂ / Steam (kg/h)

CO₂ production
Steam flowrate
MEA flowrate

ME (m³/h)
MEA 30%wt campaign – Performance test

Long run test main results

- Operating conditions
 - Flue gas: 9,825 Nm3/h
 - MEA: 28 m3/h
 - Pstripper: 1,8 bar(a)

- Results
 - CO$_2$ prod.: 1,730 kg/h
 - Loadings: $L = 0.22 \Rightarrow R = 0.515$
 - Efficiency: 83.2%
 - Energy: $\sim 3.35 \text{ GJ/t}_\text{CO}_2$
 - Degradation: 1.4 – 1.5 kg$_\text{MEA}$/t$_\text{CO}_2$
MEA 30%wt campaign – Performance test

ASPEN+ model

- Good representitivety
- Errors < 5%
 - T° profiles, CO₂ profiles
 - CO₂ prod, steam consumption...
Agenda

- IFPEN & ENEL's CCS strategies
- Pilot Plant Presentation
- MEA 30%wt tests
- MEA 40%wt preliminary results
- Conclusion
MEA 40%wt campaign

- 3 months campaign
 - March 2011 - May 2011
 - Tests under progress

- Parametric studies
 - Process optimization
 - Aspen+ model upgrade to MEA 40%wt

- Long run test = 500 hours
 - Performances validation
 - Emission measurements
 - Solvent degradation
MEA 40%wt campaign – First results
MEA 40%wt campaign – First results

- **Process optimization**
 - lean optimum $\sim 0.22 - 0.24$ mol/mol
 - $E_{\text{reg}} \sim 3 - 3.15$ GJ / t\(CO_2\)

- **Aspen+ model**
 - Good prediction for hydrodynamic
 - Kinetics tests to be completed with packing height variation

- **To be completed**
 - Degradation
 - Emissions
MEA 40%wt campaign – First results

ASPEN+ model

- **Good representitivity**
 - T° profiles, CO₂ profiles
 - CO₂ prod, steam consumption...

![Graphs showing temperature, CO₂ vapor, and absorbent concentration profiles](image-url)
Agenda

- IFPEN & ENEL's CCS strategies
- Pilot Plant Presentation
- MEA 30%wt tests
- MEA 40%wt preliminary results
- Conclusion
Conclusions - perspectives

- ENEL's Brindisi CCS pilot plant is representative of industrial units

- More than 2,000 hours of continuous operation already done

- Qualification with MEA 30%wt has been done successfully

- MEA 40%wt campaign already gave good results... Test campaign to be completed in the next month.

- Aspen+ model updated appears to be robust for MEA 20 to 40%wt
Questions?

p-antoine.bouillon@ifpen.fr
angela.mangiaracina@enel.com