Effect of varying electricity and carbon prices on operation and capture levels in flexible post-combustion CCS power plants

Olivia Errey, Mathieu Lucquiaud, Hannah Chalmers and Jon Gibbins
School of Engineering, University of Edinburgh

o.errey@ed.ac.uk
Flexible operation of post-combustion CCS

- Amine post combustion capture technologies - originally developed to separate acid gases at base-load steady state operation.
- Post combustion systems in integrated power cycles have a further objective; generation of power, with low carbon emissions.
- Responsive real world fossil power plant operations vary power output:
 - Grid balancing
 - Rapid changes in electricity markets
 - Variations in carbon and fuel markets can also influence plant dispatch
- Options for integrated PCC process design to enable flexible operation include:
 1. Capture plant bypassing
 2. Varying carbon capture rates
Why operate flexibly?

• Electricity markets
 • Seasonal, daily and hourly fluctuations
 • Ancillary contracts
Electricity market price volatility

Daily

Daily average system prices £/MWh

Hourly

Daily average system buying prices per ½ hour settlement period £/MWh

Source: Elexon Trading Operations Report April 2011
Why operate flexibly?

• Electricity markets
 • Seasonal, daily and hourly fluctuations
 • Ancillary contracts

• Carbon markets
 • Mid-long term and daily variation
More recent daily fluctuations in carbon price

Why operate flexibly?

• Electricity markets
 • Seasonal, daily and hourly fluctuations
 • Ancillary contracts

• Carbon markets
 • Mid-long term and daily variation

• Increase in grid intermittency with growing contribution from renewable sources
 • Enhance market price signals
Objective of this work:
Maximise net revenue for a range of scenarios

Optimize
Energy performance of the capture system

Optimize
Net plant revenue

Electricity selling price
Carbon price
(Fuel price)

1. CO₂ capture levels
2. Capture bypass
Implications and options for CCS plant operation

Design beyond base load operations:

1. Steam cycles with flexible steam turbine operations
 – varying capture levels
 • Capacity to reduce steam extraction thereby reducing the total carbon captured and increasing the energy output for a maintained period

2. Bypass
 • Assumption of rapid “shutting off” of capture wing liberating extra MW capacity

Assumptions

• Capability to export greater levels of carbon dioxide, at variable rates
• Capability to produce more power than design specification
• Retrofitted or pre-investment in larger or secondary turbines and generator capacity plant
• Retrofitted plant designed to operate variable IP/LP crossover steam extraction
Steam turbines with flexible capture

COP (and EOP) varies with steam extraction. The ratio of the mass flow of steam entering the solvent reboiler to the mass flow of steam entering the low pressure turbine before capture is added.

These valves are required at part-load and with additional solvent regeneration

Relocating temporarily the deaerator steam extraction may be necessary

M. Lucquiaud 2010
Plant model

• In-house gPROMS model of post combustion coal power plant
 - Integrated supercritical steam cycle, amine plant, power plant compression system and associated heat recovery equipment

• Optimization of electricity output penalty of capture system: thermodynamic integration and solvent lean:rich loading

• Aqueous solvent capture system: 30%wt MEA.

• Base plant efficiency: 44% LHV

• Carbon intensity of coal: 0.327 tonne/MWh_{th} (0.091 tonne/GJ)

• Constant fuel input
Electricity output penalty at optimum lean loading

Indicative electrical output penalties (EOP) for 25m absorber

ILLUSTRATIVE CURVE!

Optimum EOP
kWh_e/tCO2

Loss of generation + Compression + Ancillary

% CO2 removed from flue gas

% Point Efficiency Change

Rate of change in penalty with capture rate (dEOP/dc)
Optimum capture level for plant net revenue

Once the plant is built, net operating revenue that can be varied by operating decisions does not include any fixed costs by definition. Capital costs considerations are important at investment decision level only.

Over an operating period where the electricity selling price and the cost of carbon are constant, the net operating revenue balance per hour, \(R_{\text{net}} \), is:

\[
R_{\text{net}} = \text{POE} \times \text{fuelin} \times \eta_{\text{cap}} - \left\{ \frac{\text{fuel}}{\eta_{\text{cap}}} + \text{COC} \times (1 - c) \times \frac{e}{\eta_{\text{cap}}} + \frac{\text{vc}_{\text{CCS}} \times c \times e}{\eta_{\text{cap}}} \right\} \times \text{fuelin} \times \eta_{\text{cap}} - \text{vc}_{\text{base}} \times \text{fuelin} \times \eta_{\text{base}}
\]

\(c \) - Fraction of CO2 captured from flue gas
\(\eta_{\text{cap}} \) - Power plant efficiency with CO2 capture
\(\eta_{\text{base}} \) - Base plant efficiency excluding capture wing

\(\text{POE} \) - Time averaged price for electricity
\(\text{EOP} \) - Electricity output penalty
\(\text{vc}_{\text{CCS}} \) - Specific variable costs for capture plant
\(\text{vc}_{\text{base}} \) - Specific variable costs for power plant
\(\text{fuelin} \) - Rate of energetic input
\(\text{COC} \) - Cost of carbon emissions

\(\text{Base plant operating costs} \)
\(\text{Capture plant operating costs} \)
\(\text{Electricity selling price} \)
\(\text{Plant MW output with capture} \)
\(\text{Fuel costs} \)
\(\text{Carbon cost} \)
\(\text{Base plant MW output} \)
Optimum capture level for plant net revenue

To determine optimum net revenue at a specific carbon price we can differentiate revenue with respect to capture and find the optimum where there is no further increase in revenue with a change in capture rate: \(\frac{dR_{net}}{dc} = 0 \)

\[
\frac{dR_{net}}{dc} = \left\{ -POE \cdot fuelin \cdot e \left(\frac{dEOP \cdot c}{dc} \right) \right\} - \left\{ (-COC \cdot e + vc_{CCS} \cdot e) \cdot fuelin \right\} = 0
\]

\[
c_{opt} = \left(\frac{COC - vc_{CCS}}{POE - EOP} \right) \cdot \frac{dc_{opt}}{dEOP}
\]

This optimum is specific to a given carbon emission cost and electricity selling price

\(R_{net} \) (\$/hr) Net operating revenue
\(POE \) (\$/MWh\(_{e}\)) Time averaged price for electricity
\(EOP \) (MWh\(_{e}/tCO_2\)) Electricity output penalty
\(e \) (tCO\(_2)/\)MWh\(_{th}\)) Specific emissions factor for plant
\(c \) (-) Fraction of CO\(_2\) captured from flue gas
\(COC \) ($/tCO\(_2\)) Cost of carbon emissions
\(fuelin \) (MWh\(_{th}/\)hr) Rate of energetic input
\(vc_{CCS} \) ($/tCO\(_2\)) Specific variable costs for capture plant
\(c_{opt} \) (-) Optimal fraction of CO\(_2\) captured
Optimum capture level for maximum plant net revenue

Optimum net revenue: \(\frac{dR_{\text{net}}}{dc_{\text{opt}}} = 0 \) for a given carbon emission cost and electricity selling price

Optimum capture level for a range of carbon and electricity prices:

\[
c_{\text{opt}} = \left(\frac{\text{COC} - v_{\text{CCS}}}{\text{POE}} - \text{EOP} \right) \times \frac{dc}{d\text{EOP}}
\]

R_{\text{net}} ($/hr) net operating revenue
POE ($/MWh) time averaged price for electricity
EOP (MWh/tCO2) electricity output penalty associated with capture level
COC ($/tCO2) cost of carbon emissions
v_{\text{CCS}} ($/tCO2) specific variable costs for capture plant
Capture plant bypass

When bypass is an option, it will be financially beneficial to fully bypass the capture wing at specific carbon and electricity price scenarios. The point at which it is profitable to bypass the plant rather operate the capture plant will vary depending on the capture level being operated in each scenario. These crossover points can be found when the net revenue for capture is equal to net revenue for bypass for a specific carbon/electricity price scenario:

\[R_{\text{net}}(\text{capture}) = R_{\text{net}}(\text{bypass}) \]

From the previous \(R_{\text{net}} \) equation, the above can simplified with electricity selling price as the subject to:

\[
\text{POE} = \frac{e \ast (c_{\text{bypass}} - c_{\text{capture}}) \ast (\text{COC} - \text{vc}_{\text{CCS}})}{(\eta_{\text{base}} - (\text{EOP} \ast c_{\text{capture}} \ast e)) - (\eta_{\text{base}} - (\text{EOP} \ast c_{\text{bypass}} \ast e))}
\]

Assumptions:

- \(\text{EOP} \ast c = c \ast [\text{EOP}_x + \text{EOP}_{\text{comp}}] + \text{EOP}_{\text{ancillary}} \)
- At bypass, \(c, \text{EOP}_x \) and \(\text{EOP}_{\text{comp}} \) (EOPs for steam extraction and compression respectively) = 0.
- \(\text{EOP}_{\text{ancillary}} \) at bypass remains constant at the capture level bypassed (ancillary equipment on ‘stand-by’)

Using the above assumptions and simplifying again, the electricity selling price when the bypass becomes financially preferential (for a specific carbon price and capture level) is defined as:

\[
\text{POE} = \frac{\text{COC} - \text{vc}_{\text{CCS}}}{\text{EOP}_x + \text{EOP}_{\text{comp}}}
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_{\text{net}})</td>
<td>Net operating revenue</td>
</tr>
<tr>
<td>(\text{POE})</td>
<td>Time averaged price for electricity</td>
</tr>
<tr>
<td>(\text{EOP})</td>
<td>Total electricity output penalty</td>
</tr>
<tr>
<td>(\text{EOP}_x)</td>
<td>EOP from steam extraction</td>
</tr>
<tr>
<td>(\text{EOP}_{\text{comp}})</td>
<td>EOP from CO2 compression</td>
</tr>
<tr>
<td>(EOP_{\text{ancillary}})</td>
<td>EOP from capture wing ancillary</td>
</tr>
<tr>
<td>(e)</td>
<td>Specific emissions factor for plant</td>
</tr>
<tr>
<td>(c)</td>
<td>Fraction of CO2 captured from flue gas</td>
</tr>
<tr>
<td>(\text{COC})</td>
<td>Cost of carbon emissions</td>
</tr>
<tr>
<td>(\text{vc}_{\text{CCS}})</td>
<td>Specific variable emissions for capture plant</td>
</tr>
<tr>
<td>(\eta_{\text{base}})</td>
<td>Base plant efficiency excluding capture wing</td>
</tr>
</tbody>
</table>
Optimum capture levels in variable price scenarios

Assuming 2.2 GJ/tonne fuel price

Optimum capture level contours

Bypass revenue crossover from 0.85 capture
Bypass revenue crossover from 0.9 capture
Bypass revenue crossover from 0.95 capture
Net revenue = 0 at 0.85 capture
Net revenue = 0 at 0.95 capture

Non-profitable operation
Short run net cash flow revenue options for different market scenarios

The left hand chart shows cash flows in different market scenarios (corresponding to the colours on the right hand chart scenarios) under different capture level operating regimes.

Solid lines refer to revenue with capture. Dashed lines refer to revenue with bypass.
Summary

• Post combustion carbon capture plants will exist in dynamic markets
• Higher electricity output penalties at higher capture levels
• Revenue can be maximised by operating variable capture rates and bypass systems where allowable
• Variable capture rates offer higher relative increases in revenue at higher electricity prices
• With a system which is not optimised for higher capture levels, it will not be possible to generate revenue at higher capture levels even with high carbon prices
• Market scenarios exist where CCS generates revenue compared with bypass
• CCS operation will be more sensitive to electricity prices than carbon prices
Thank you

o.errey@ed.ac.uk