
# INTERACTION BETWEEN PROCESS ARCHITECTURE AND SOLVENT PROPERTIES FOR AMINE-BASED $\mathbf{CO}_2$ CAPTURE

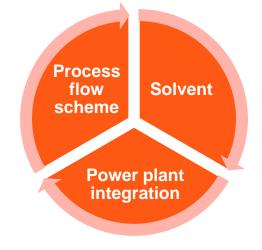
Thibaut Neveuxa,b, Yann Le Moulleca, Jean-Pierre Corrioub, Eric Favreb

<sup>a</sup> EDF R&D | Department of Fluid Dynamics, Power Generation and Environment | 6 quai Watier, Chatou, France
 <sup>b</sup> Université de Lorraine | CNRS - Laboratoire Réactions et Génie des Procédés (LRGP), UPR 3349 | ENSIC, Nancy, France





## **CONTEXT & OBJECTIVE**


## A challenge for post-combustion CO<sub>2</sub> capture: reduce both energy penalty and cost of avoided CO<sub>2</sub>

## Literature focus individually on

- Solvent development and characterization
- Modifications of the process flow scheme
- Heat integration with power plant

## In this study

- The three aspects are considered together
- An automatic methodology is developed, based on
  - Rigorous calculation of process performance
  - Use of an non-linear optimization algorithm, with LCOE as objective function
  - Simultaneous optimization of design and operating parameters





## TYPE OF AMINE SOLVENTS

#### Type of solvent according to physicochemical properties

Reaction kinetic

Heat of absorption

Resistance to degradation

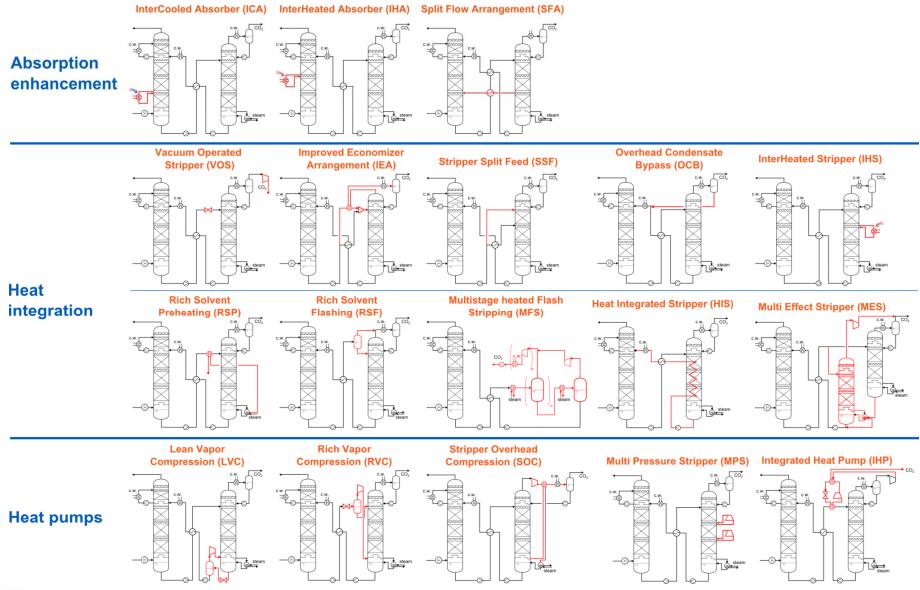
Cyclic capacity

Transport properties

**Environmental aspects** 

#### **KEY MESSAGE**

Process performance strongly depends on the specific physicochemical properties of the solvent


#### Example of popular solvents and approximate values of most influent properties for a standard process

| Solvent                                                                   | MEA<br>30 wt% | AMP<br>30 wt% | MDEA<br>30 wt% | AMP+PZ<br>15+15 wt% | MDEA+PZ<br>15+15 wt% |
|---------------------------------------------------------------------------|---------------|---------------|----------------|---------------------|----------------------|
| Kinetic constant, log(k <sub>App</sub> ) [s <sup>-1</sup> ]               | 4.6           | 3.3           | 1.3 🛑          | 5.1                 | 5.1                  |
| Heat of absorption $\Delta_{abs}H$ [kJ.mol <sup>-1</sup> ]                | 80-85         | 50-90         | 45-60          | 60-90               | 60-80                |
| Cyclic capacity $\Delta\alpha$ [mol <sub>CO2</sub> .mol <sub>Am</sub> -1] | 0.25          | 0.5           | 0.2            | 0.4                 | 0.35                 |
| Thermal degradation at 140°C [% per week]                                 | 5.3           | 0             | 1.7            | 0<br>+ 0.25         | 1.7<br>+ 0.25        |

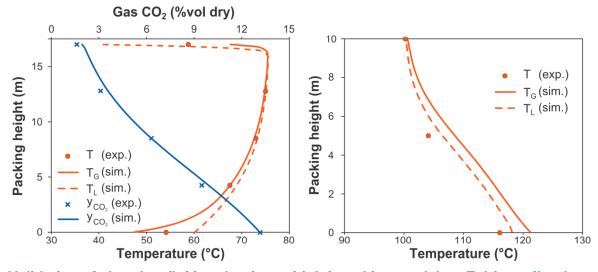
Data from Dubois et Thomas (2012), Lepaumier (2008), Aronu et al. (2011), Chen et al. (2011), Dash et al. (2012)



## **OVERVIEW OF SINGLE PROCESS MODIFICATIONS**



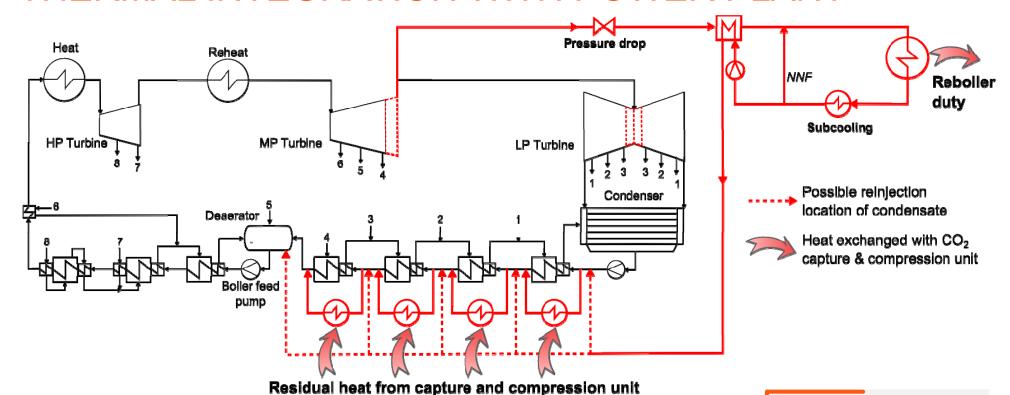



## METHODOLOGY USED FOR PROCESS EVALUATION

#### Phenomenological modeling<sup>1</sup>

- In-house simulation and optimization tool (in Fortran)
- e-UNIQUAC model for electrolyte solutions
- Rate-based formulation for heat & mass transfer
- Chemical enhancement in liquid film
- → Absorption & stripping models validated against literature data (Esbjerg and NTNU pilot plants)

#### Evaluation of energy penalty


- Total equivalent work (kWh/t<sub>CO2</sub>), including
  - Parasitic load (reboiler duty + vapor quality)
  - CO<sub>2</sub> compression work up to 110 bars
  - Auxiliary work of capture unit (e.g. pumps, fans, additional compressor)
  - Heat integration between power plant and capture unit
- Derivation of new correlations



Validation of absorber (left) and stripper (right) packing model on Esbjerg pilot data

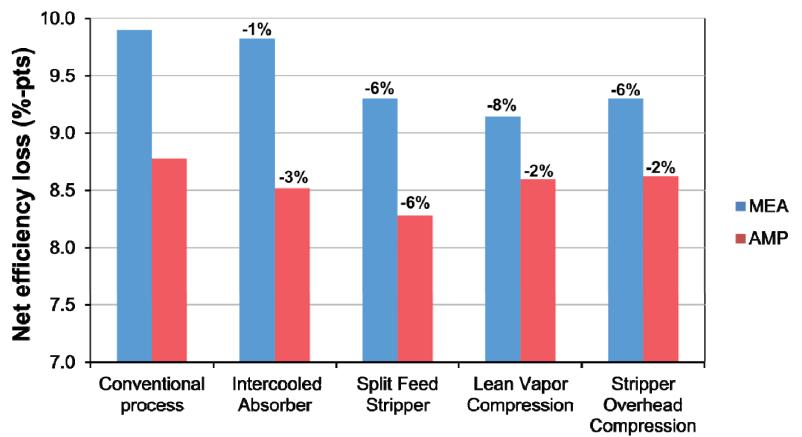


## THERMAL INTEGRATION WITH POWER PLANT



### Integration strategy between capture unit and power plant

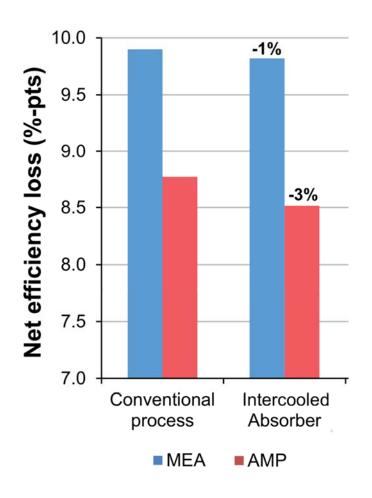
- Steam extraction at the required pressure level
- Steam desuperheating with the reboiler condensate
- Reinjection in the feedwater preheaters at the proper temperature level
- Subcooling of reboiler condensate possible (for some particular capture processes)
- Residual heat of capture and compression unit integrated into feedwater preheaters






## **ENERGETIC SIMULATION RESULTS FOR MEA & AMP**

#### ■ Conventional process + 4 process modifications evaluated for 30wt% MEA & 40wt% AMP solutions


- Process equipment designed with chemical engineering heuristics
- Operating parameters optimized with respect to energy penalty with a dedicated algorithm (fixed design)



Energetic simulation results of five flow schemes (percentages are reductions with respect to conventional process)



## COMMENTS ON LIMITING PHENOMENA



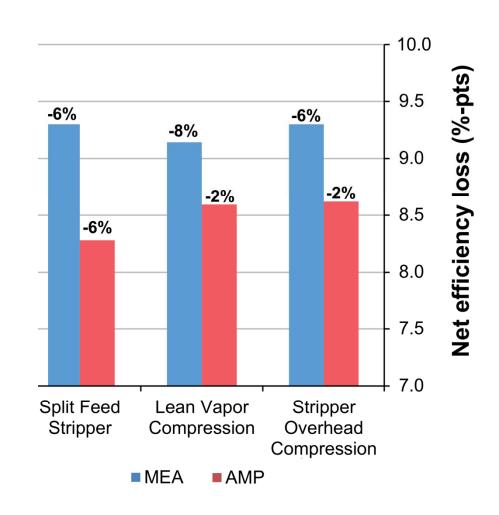
#### MEA to AMP shift

- Lower heat of absorption
- □ Higher cyclic capacity → sensible heat reduced
- But higher absorber required

#### Absorption enhancement

- Absorber intercooler favor driving force
- More efficient for AMP (3% reduction) than for MEA (1%)
- Efficient for thermodynamic-driven mass transfer




## COMMENTS ON LIMITING PHENOMENA

#### Heat integration (Split Feed Stripper)

- Improve heat exchange in economizer
- pre-condensate steam in stripper top
- Generic enhancement, efficient for both amine (6%)

#### Heat pump effect (Lean Vapor Compression & **Stripper Overhead Compression)**

- Rise heat quality through mechanical work
- Generate steam to provide part of reboiler duty
- More efficient for MEA (6-8%) than for AMP (2%)
- Efficient for high heat of absorption solvents





## NEED FOR A SYSTEMATIC OPTIMIZATION

#### Limitations of energetic approach

- Only production loss is evaluated
- No consideration of additional CAPEX
- No consideration of other OPEX (e.g. solvent loss)

Need to consider both CAPEX and OPEX

- → LCOE
- → Cost of avoided CO₂

#### A global technical-economic approach

- Numerous parameters → need for a systematic method
- Simultaneous optimization of design and operating parameters
- NLPQLP<sup>1</sup> method used for non-linear optimization

#### ■ Technical-economic assumptions for cost estimation<sup>2</sup>

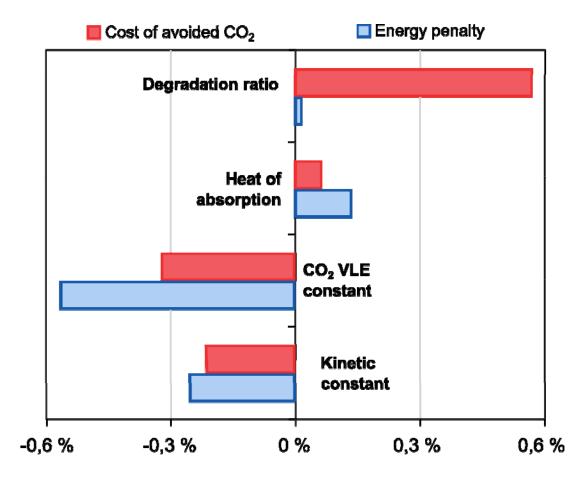
- Supercritical pulverized coal
  - Simulated with recommendations from EBTF
  - · Equipped with SCR, ESP and FGD
  - 46.1  $\%_{LHV}$ , 1082  $MW_{gross}$ , 975  $MW_{net}$ , 755  $t_{CO2}/h$
- □ 90% CO<sub>2</sub> capture, amine post-combustion
- LCOE evaluated in constant €<sub>2011</sub>
- Nth-of-a-kind plant, 40 years lifetime
- 7600 operation hours per year
- 8% discount rate, no inflation
- Fuel price = 10 €/MWh<sub>LHV</sub>
- □ TOC = 1.9 x Installed Cost
- □ Contingencies = 10% x EPC
- No transport and storage cost considered



<sup>&</sup>lt;sup>1</sup> Dai et Schittkowski, 2008. Pacific Journal of Optimization, 4:335–351,

<sup>&</sup>lt;sup>2</sup> In compliance with Rubin et al., 2013. Int. J. Greenh. Gas Con., 17:488-503

## OPTIMAL DESIGN OF A CONVENTIONAL PROCESS


| Design parameters                                         | Original           | Optimized                     |                                                                                                       |
|-----------------------------------------------------------|--------------------|-------------------------------|-------------------------------------------------------------------------------------------------------|
| <ul> <li>Absorber height (Z<sub>abs</sub>)</li> </ul>     | 15 m               | → 20.0 m                      | → allow to maximize rich loading                                                                      |
| <ul> <li>Stripper height (Z<sub>strip</sub>)</li> </ul>   | 10 m               | → 16.2 m                      | → higher to provide pre-condensate area due to relatively<br>cold rich solvent inlet (cf. economizer) |
| <ul> <li>Economizer pinch (ΔT<sub>eco</sub>)</li> </ul>   | 10 K               | → 28.1 K                      | → reduce eco. CAPEX & provide colder rich solvent                                                     |
| <ul> <li>Reboiler pinch (ΔT<sub>reb</sub>)</li> </ul>     | 10 K               | → 5.7 K                       | → trade-off CAPEX/OPEX favorable to OPEX                                                              |
| <ul> <li>Condenser pinch (∆T<sub>cond</sub>)</li> </ul>   | 10 K               | → 5.0 K                       | → trade-off CAPEX/OPEX favorable to OPEX                                                              |
| Operating parameters                                      |                    |                               |                                                                                                       |
| <ul> <li>Lean loading ratio (α<sub>lean</sub>)</li> </ul> | 0.24               | → 0.20                        | → lower solvent flow rate, reducing equipment sizes                                                   |
| <ul> <li>Reboiler pressure (P<sub>reb</sub>)</li> </ul>   | 2.1 bar            | → 2.1 bar                     | → limitation due to solvent degradation                                                               |
| Energy penalty<br>Cost of avoided CO <sub>2</sub>         | 9.9 %-pts<br>100 % | → 8.5 %-p <sup>2</sup> → 91 % | TS .                                                                                                  |

### Optimal design parameters are quite "unusual"

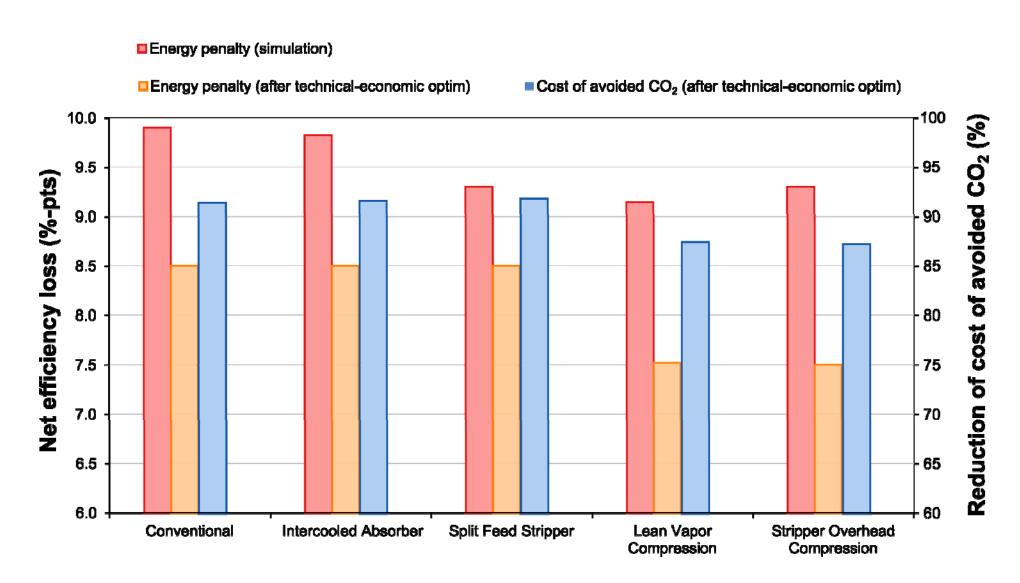
- Mainly due to power plant integration → favor cold rich solvent at stripper top
- Substantial energy gain 1.4 %-pts and reduction of cost of avoided CO<sub>2</sub> of 9 %



## SENSITIVITY TO SOLVENT PROPERTIES



#### **MOST SENSITIVE PARAMETERS**

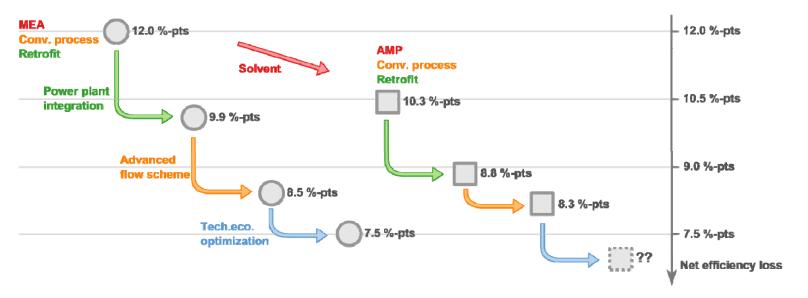

**Degradation ratio** for cost of avoided CO<sub>2</sub>

> CO<sub>2</sub> solubility for energy penalty

Influence of a 10% change of MEA properties on energy penalty and cost of avoided CO<sub>2</sub>



## OPTIMIZATION RESULTS FOR MEA






## **SYNTHESIS**

■ Three ways of performance improvement : Solvent | Power plant integration **Process flow scheme** 

→ Need to consider all aspects in order to evaluate the potential of a solution



#### Perspectives

- Implement other fully characterized solvents
- Evaluate advanced architecture by coupling process modifications with synergetic effects

#### A RELEVANT APPROACH

- Technical-economic analysis
  - Coupled with a systematic optimization algorithm
- Simultaneous resolution of design and operating parameters



## THANK YOU FOR YOUR ATTENTION!

## Any questions?

yann.le-moullec@edf.fr



