The Results from PCC Pilot Plant with New Amine Solvent, Process and Packing

Shinya Okuno*, Hiroshi Sato, Jian Huang, Yoshiyuki Iso, Shiko Nakamura, Yasuro Yamanaka, Toshiya Matsuyama

17th September, 2013 / Bergen, Norway

IHI Corporation
Chemical Engineering Dep.
Product Development Center
Today’s Contents

1. Introduction
2. Advanced Solvent
3. Advanced Packing
4. Advanced Process
5. Summary
CO₂ capture method for coal fired power plant

Oxy-fuel Combustion

- Coal
- N₂
- Air
- O₂
- Oxygen production unit
- Flue gas recirculation
- Boiler
- Flue gas treatment
- CO₂, H₂O, O₂
- Non-condensable gas

Calide Oxy-fuel Project 30 MWe (Demonstration project)

- N₂, H₂O, O₂

Post-combustion

- Coal
- Air
- Oxygen production unit
- Flue gas treatment
- Precise treatment
- CO₂ separation
- CO₂ storage
- Compression/cooling

20 ton-CO₂/day Pilot Plant

- Pre-combustion (Gasification)
- N₂
- Air
- O₂
- Oxygen production unit
- Gasification
- Flue gas treatment
- Shift reactor
- CO₂, H₂
- Use of H₂ (for power generation)
- CO₂ separation
- CO₂ storage
- Compression/cooling
Development Items

- High efficiency heat recovery
- High CO₂ loading of rich amine

Advanced Process

Pilot Plant →Demonstration/Commercial Plants

- High CO₂ cyclic capacity
- Low reaction heat
- High desorption performance

Advanced Solvent

Advanced Packing System

- High absorption performance
- Low gas pressure drop
Today’s Contents

1. Introduction
2. Advanced Solvent
3. Advanced Packing
4. Advanced Process
5. Summary
IHI’s Pilot Plant

20 ton-CO₂/d Pilot Plant located at IHI's Aioi Works in Japan

Absorber

Stripper

Pre-Treatment Tower

Specifications

<table>
<thead>
<tr>
<th>Source Gas</th>
<th>Flue Gas of Coal-Fired Boiler or PG Boiler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Captured CO₂</td>
<td>20 ton-CO₂/d</td>
</tr>
<tr>
<td>CO₂ Capture Ratio</td>
<td>90 %</td>
</tr>
<tr>
<td>Flue Gas Flow Rate</td>
<td>MAX 4000 m³_N/h-wet</td>
</tr>
<tr>
<td>CO₂ Concentration (Inlet)</td>
<td>14-15 %-dry</td>
</tr>
<tr>
<td>Solvent Flow Rate</td>
<td>MAX 24 m³/h</td>
</tr>
<tr>
<td>Steam Flow Rate</td>
<td>MAX 2500 kg/h</td>
</tr>
</tbody>
</table>
Pilot Plant Process (conventional process)

Absorber
- I.D. 850 mm
- 5 m x 3 sections
- Structured packing
 250 m²/m³ (conventional)

Stripper
- I.D. 700 mm
- 5 m x 2 sections
- Structured packing
 250 m²/m³ (conventional)

Possible to evaluate in different packing height

Superficial gas velocity ≅ 2.0 m/s

Copyright © 2013 IHI Corporation All Rights Reserved.
Results of Advanced solvent

- The absorption rate of Solvent A is the highest in lab test.

![Fig. Lab-test results](image1)

![Fig. Pilot plant results](image2)

- The regeneration energy of Solvent A has been achieved 20% lower than of MEA(30wt%).

CO₂ Capture ratio = 90%
1. Introduction

2. Advanced Solvent

3. Advanced Packing

4. Advanced Process

5. Summary
Advanced packing

Absorber
- I.D. 850 mm
- 5 m×3 sections
- Structured packing

Stripper
- I.D. 700 mm
- 5 m×2 sections
- Structured packing

Replaced the bottom conventional packing (5 m) with IHI advanced one
Results of advanced packing by Pilot Plant

- Regeneration energy with 5m IHI advanced packing is as same as 10m conventional packing.

- Whole pressure drop of IHI packing was lower at the same absorption performance (regeneration energy).

Copyright © 2013 IHI Corporation All Rights Reserved.
1. Introduction

2. Advanced Solvent

3. Advanced Packing

4. Advanced Process

5. Summary
Heat efficiency was improved and possible to make higher rich amine CO₂ loading. Latent heat of evaporation can mainly be reduced.
Results of 50 kg-CO$_2$/d Bench-scale test

<table>
<thead>
<tr>
<th>Solvent</th>
<th>MEA</th>
<th>Solvent A</th>
<th>Solvent B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption Rate</td>
<td>○</td>
<td>◎</td>
<td>△</td>
</tr>
<tr>
<td>Desorption Ratio</td>
<td>×</td>
<td>△</td>
<td>○</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regeneration Energy (Bench-scale test results)</th>
<th>Conventional Process</th>
<th>IHI Advanced Process</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>× (3.8 GJ/t-CO$_2$)</td>
<td>No Data (2.7 GJ/t-CO$_2$)</td>
</tr>
<tr>
<td></td>
<td>△ (2.9 GJ/t-CO$_2$)</td>
<td>△ (2.9 GJ/t-CO$_2$)</td>
</tr>
<tr>
<td></td>
<td>△ (2.9 GJ/t-CO$_2$)</td>
<td>○ (2.5 GJ/t-CO$_2$)</td>
</tr>
</tbody>
</table>

Solvent with high desorption performance is suited to IHI advanced process.
Results of advanced process by Pilot Plant

- 3% energy saving was achieved by advanced packing only, and when advanced process was further added, energy saving improved 4% more.
- It expects that the regeneration energy of Solvent B is 37% energy saving.
Summary

- Absorption performance of IHI advanced packing was twice as much as that of conventional one.

- Advanced process can reduce the regeneration energy. Especially high desorption performance solvent was suit to this process, we plan to evaluate this year.
Thank you for your attention!

IHI

Realize your dreams