

Innovation and Creativity

Polymeric Membranes for CO₂-capture:

Results obtained with a small pilot-scale module at a coal-fired power plant; and further progress

Professor May-Britt Hägg et al. Dep. Chemical Engineering

Content of presentation

- Briefly about the facilitated transport membrane
- Challenges in up-scaling from lab to pilot
- Results from pilot scale testing CO₂ capture
- Further progress in demonstration

An illustration of the facilitated transport with a) Fixed-site-carrier or b) Biomimetic design

Carrier Mediated Facilitated Transport Systems

Limiting diffusion rate is that of CO₂-carrier complex

The FSC-PVAm membrane is mimicking Nature (Fixed-Site-Carrier Polyvinylamine)

Dominating reactions:

$$CO_2 + H_2O -> H_2CO_3$$

$$H_1 CO_2 + NH_2 -> H_2CO_3 + NH_2$$

$$H_2 CO_3 + NH_2 -> H CO_3^- + NH_3^+$$

$$H CO_3^- + NH_3^+ -> H_2 CO_3 + NH_2$$

 $H_2 CO_3 -> H_2 O + CO_2$

on porous support

Flux equation:

$$J_{A} = \frac{D_{A}}{l} \left(c_{A,0} - c_{A,l} \right) + \frac{D_{A,c}}{l} \left(c_{AC,0} - c_{AC,l} \right)$$

Right hand side:

1st term: Fickian diffusion, 2nd term: facilitated transport

Effect of pH on PVAm structure

 The pH of the casting solution determins the relative amounts of free amine groups and the corresponding ammonium salts

$$pH=8$$

- At low pH most of the amino groups are protonated and converted into less reactive ammonium groups
- At high pH most amino groups are present as neutral amines

Titration curve for casting solution with varying pH

Adjusting of the pH of casting solution gave dramatic increase in performance (results from 2012)

Gas Mixture: 10%CO2 - 90% N2

Process conditions: Feed at 1.2 bar, 35°C Slight vacuum on permeate side

Innovation and Creativity

pH = 10 was set as standard for the casting solution
As documented, humidity is of major importance for the separation –
Flue gas is saturated with humidity.

The support material for PVAm is Polysulfone (PSf)

Content of presentation

- Briefly about the facilitated transport membrane
- Challenges in up-scaling from lab to pilot
- Results from pilot scale testing CO₂ capture
- Further progress in demonstration

..there is a big gap to cover going from lab to pilot to innovation...

- 1998→ first ideas, concept confirmed 2000
- 2001 2004: Basic research on the membrane material
- 2005 2008: KPN project with Statoil & Alstom (lab-scale)
- 2008 2012 BIP project with Statoil & Gassnova (~0.5 m2)

- 2007 -2012: EU project
 (Nanoglowa) covering part of the road towards pilot demonstation ~(~2 m2)
- 2013 2015: Planning a larger pilot (~10 m2) demonstration project with real flue gas with several international partners

Measurements are done both on small and larger sheets

✓ 2nd step (→2011): Small bench-pilot, Flat sheets,0.5 – 2m²

√ 1st step (→2008):

Lab, diameter 5-7 cm

3rd step (→ 2015): Demonstration pilot with

- 1) hollow fibres 8 10m²
- 2) Flat sheets

The small pilot rig is very advanced and fully automized

Flow sheet for FSC-pilot plant (STATOIL-Gassnova-NTNU), Drawing version 2010 12 01, Project # 40112000

The module design does not, however, give correct Info on flow patterns a scaled-up module based on HF is proposed

Sample results 2012; optimized process conditions FSC Membrane; Mixed Gas Tests CO₂ – N₂

Permeance & selectivity of PVAm/PSf membrane at 1.2 bar, 35°C Flat sheets (Feed gas: 10% CO₂+ 90% N₂ mixed gas)

Results using a Small Pilot

Simulations can help to identify best conditions – however, the facilitated transport is difficult to simulate

$$J_{A} = \frac{D_{A}}{l} \left(c_{A,0} - c_{A,l} \right) \ + \ \frac{D_{AC}}{l} \left(c_{AC,0} - c_{AC,l} \right)$$

General demands, membranes:

- High permeance (> 1000 GPU)
- Selectivity > 200 is preferred
- Low feed pressure (<3 bar) and vacuum on permeate side (200-300 mbar)
- Membrane module design must be hollow fibers or spiral-wound
- Process design can be optimized

Spesific demands, FSC

Humidity level > 75%RH

Content of presentation

- Briefly about the facilitated transport membrane
- Challenges in up-scaling from lab to pilot
- Results from pilot scale testing CO₂ capture
- Further progress in demonstration

Back to: the EU-NanoGloWa project, 2007 - 2011

- Nanoglowa = <u>Nanomaterials against Global Warming</u>
- 24 partners, R&D inst., engineering, power producers

Main Goals:

- Membrane up-scaling, pilot testing at a power plant
- CO₂ separation from flue gas at coal fired power plants using membrane technology
- Documenting durability of the membrane material over time when exposed to components such as SO₂ and NOx

Innovation and Creativity

In parallel to the upscaling, durability tests were performed at NTNU; preparing for flue gas tests at a coal fired power plant

Experimental procedure

- ☐ 6 membranes exposed each to SO₂ (500ppm), NO₂ (200ppm), NO (200ppm) for 168 h, at 25°C and 50°C, 2 bar, maximum relative humidity.
- ☐ The contamination gas composition: $17\%CO_2$ - $78\%N_2$ - $5\%O_2$ + 1 contaminant
- ☐ Mixed gas permeation, IR, NMR, SEM tests before and after exposure
- ■No change in performance could be detected

Next step in the project: Continuous durability using synthetic and real flue gas

Testing (March 2010- December 2010) at ICHP Poland, Warsaw

Before

After exposure

- □ 4 months continuous operation including 3 weeks synthetic and 2 weeks real flue gas at Borselle power plant, The Netherlands
- ☐ Gas permeation, IR, NMR spectroscopy and SEM pictures were used to identify the effect of contaminants
- ☐ Main challenge: the module sealing, leakage, flow pattern
- ☐Total membrane area installed: 435 cm²

Continuous durability using synthetic flue gas

Test parameters and **results** obtained at IChP Poland (~4 months)

Test parameters:

- ☐ Temperature 30°C and 50°C, feed flow 44 565 l/h,
- ☐ Feed pressure 1.05 bar (fan), feed humidity RH 94 100%,
- \square Feed gas composition (18% CO₂, 5% O₂ rest N₂)

Permeate flow rate

250 mbar vacuum: $11-16 l/(m^2 h)$

100 mbar vacuum: $17-35 l/(m^2 h)$

Permeate purity - CO₂ % in permeate

250 mbar vacuum: 57-65 %

100 mbar vacuum: 72-80 %

www.ntnu.no

Continuous durability using synthetic and real flue gas

Results: raw data synthetic flue gas – 500 hours

Next step: Pilot scale long term testing; real flue gas

Membrane testing at EDP power plant Sines, Portugal

Main goals

- □ Demonstration in 2011
 - ☐ Longer time: 6 months
 - Larger: membrane area, flows
 - Durability: checking any performance degradation

Secondary goals

- □ Performance charting
 - Behaviour in real flue gas (a first!)
 - ☐ Finding optimal conditions / settings
- Membrane module validation
- Membrane installation validation / optimisation
- ☐ (Recovery optimisation of CO₂ was not focused on)

Pilot scale long term testing with real flue gas; EDP in Portugal

Flue gas extraction point and test rig location

- ☐ Sines Power Plant Unit 4 (314 MWe)
- ☐ On the gas-gas heater inlet hood (cold gases)

Compliments of EDP

Pilot scale long term testing with real flue gas 2011

Test parameters: feed flow: 6-24 m³/h, permeate vacuum 100-200 mbar

	From 23 rd May until mid July	From 17 th August to December
Type of membranes (from NTNU)	FSC (Fixed-Site Carrier) flat sheet	
Membrane area in use	~ 0,25 m ²	~ 1,5 - 2m ²
Membranes module (from Yodfat)	With 2 out of 12 elements (4 membranes)	With 12 elements (24 membranes)
Sines Power plant Unit 4	314 MWe, pulverised bituminous coal, flue gas cleaning (ESP, Wet FGD limestone-gypsum, SCR from mid August)	
Flue gas main composition:	Saturated gases at ~ 50 °C ($\sim 13\%$ H ₂ O) Feed flow: 6-24 m ³ /h, vacuum 100-200 mbar	
• SO ₂	$< 200 \text{ mg/Nm}^3, 6\% O_2, \text{dry gas}$	
• NOx	500-600 mg/Nm³, dry gas (SCR out of service)	< 200 mg/Nm³, dry gas (SCR in service)
• Dust (fly ashes)	$< 20 \text{ mg/Nm}^3, 6\% \text{ O}_2, \text{dry gas}$	
• CO ₂	~ 12% vol. at MCR (lower at boiler low loads)	
• O ₂	~ 6% vol. at MCR (higher at boiler low loads)	

²²Pilot scale long term testing with real flue gas

Membrane performance May-Aug. 2011 (200 mg/m³ SO₂, 500 mg/m³ NOx)

<u>Inspection after 2.5 months continuous operation</u>

- ☐ Little performance reduction
 - ☐ No fouling
 - ☐ No damage detected / visible (leaks)
 - \square Some slight discolouration \rightarrow supports

Pilot scale long term testing with real flue gas - Sines, Portugal

Photos: rig, module, membrane, extraction point

Pilot scale long term testing with real flue gas → Dec.2011

Technical issues which needed to be solved

(in bold are the factors affecting the most the membrane performances)

- ☐ High NO_x levels: lack of SCR
- ☐ Vacuum pump/system leakage: module, sealing, pipes
- ☐ Water condensation: module, tubing, sensors
- System inertia: slow equilibration
- Filter saturation
- □ Vacuum pump (power) inadequate
- ☐ Trace heating too high RH effect on permeance and selectivity
- □ RH measurements near saturation
- □ Rig operating and membrane conditioning: lack of experience (operators)
- □ Instruments calibration
- ☐ FREQUENT OUTAGES OF THE POWER PLANT
- But the membrane survived and showed steady performance!

Conclusions for the membrane pilot testing in Portugal

- ☐ Constant separation performances over six months in real flue gas (Good durability!)
- \square Maximum CO₂ % in permeate measured was ~75 % («once through» one stage)
- Maximum permeate flow rate 21 l/h (525 l/day) for an area of aprox. ~1.5 m²
- \square During periods of constant and normal power plant operation: <u>the CO₂ permeance</u> and selectivity were similar to the values obtained in the laboratory (repeatable!)
- ☐ Challenges experienced were:
 - ☐ Vacuum pump operation
 - ☐ Re-heating of the flue gas: strong effect on feed RH%, separation
 - ☐ Frequent power plant outage(s): strong effect on feed RH%, separation
 - ☐ Unaccounted internal leakages (23 linear meters of sealing)
 - ☐ Water condensation in the rig
 - ☐ Measurement of feed humidity inside module
 - ☐ Gas flow pattern in the flat sheet module is not optimal
 - ☐ These are important lessons learned when we now go into next phase of testing for different gas mixtures and scaling up

Innovation and Creativity

Content of presentation

- Briefly about the facilitated transport membrane
- Challenges in up-scaling from lab to pilot
- Results from pilot scale testing CO₂ capture
- Further progress in demonstration

The road now towards a larger pilot

Status 2013: We have

 Confirmed excellent separation performance and durability of the membrane material

We do not have

- A good simulation tool for the facilitated transport membrane, but the one we have works fairly good at low feed pressures
- Experimental results from a larger, Hollow Fiber module where flow patterns will guide the process design to be chosen.

Where do we want to go → next 2 years:

- Scale up to a HF module of ~10 m2 / collaboration with international membrane producer (Air Products)
- Test at realistic process conditions (guided by end users)
- Design a Demo process based on obtained results, and better simulation tool → next level, TRL3 (2016→)

We have two new demo projects; 2013 →

- One with ECRA (European Cement Industry
- One with Oil & Gas Companies

1) Flat sheet module (-> potential of spiral-wound) CO₂ capture membrane testing at Norcem's Brevik plant; CO2 content ~20%

Innovation and Creativity

2) Hollow Fiber membranes: small commercial module (~10 m2)

Two types of flue gas:

- 13 vol% CO2 (like from Mongstad cracker)
- 8 vol% CO2 (OTSG; on request from oil sand producers)

Partners on the team with NTNU:

- Air Products, Alberta Funders (oil sand companies for OTSG-gas), Statoil, DNV KEMA, Sintef MC
- Additional funding partner: GASSNOVA

Air Products will deliver the HF and module, NTNU/Sintef will coat them with PVAm membrane

Innovation and Creativity

Summary

- PostCombustion Capture membranes are a promising alternative
 - Unique advantages over some other capture processes
 - (no chemicals, no waste streams, compact solutions)
- Fixed Site Carrier membranes (or facilitated transport membranes)
 - Are the only viable option for post combustion unless an innovative process solution is possible (ref. MTR)
- Rapid R&D developments
 - Durability is a key issue this has been documented in flue gas from coal fired power plant for the FSC-membrane (ref. Nanoglowa)
 - High purity (95% CO2) / recovery (80%) potential with right choice of process solution
 - Energy usage no thermal heating
- Higher CO₂ concentration usually means high potential
 - due to high driving force for capture

Membranes are ENVIRONMENTAL FRIENDLY solution!

Acknowledgements to our project partners so far:

The Research Council of Norway, CLIMIT program

Thank you for your attention!

Contact: may-britt.hagg@chemeng.ntnu.no

