

Transient Behavior of Post Combustion CO₂ Capture Process

2nd IEA Post Combustion Capture Conference Bergen, Norway 17 September, 2013

Stefanía Ósk Garðarsdóttir Chalmers University of Technology Division of Energy Technology

Background

- Increased capacity of intermittent energy sources in the electricity mix
 - Demand for load flexibility in base load power plants increases
- Effects on downstream CO₂ capture systems
 - Dynamic analysis is needed

EU power mix

Source: ewea.org

Aim

- Evaluate transient behavior of the capture system with respect to a typical load-change ramp rate in modern coal power plants
 - Discuss connections for the steam cycle and CO₂ transportation network

• Evaluate steady state effects on power plant performance at different load conditions

Aim

The model

- 30 wt% MEA-based absorption model constructed in Dymola (Åkesson et al. 2012)
- Rate-based model
- Chemical equilibrium assumed in model parts

Evaluation of absorption model

- Experimental results from step response tests conducted at DONG
 Energy coal fired power station in Denmark
- Experimental data from two operating points
 - Both steady-state and dynamic operation

Source: Åkesson et al., 2012

The model applied I

- Capture system dynamics
 - Dynamic sensitivity analysis
 - Effects of different control strategies

Control strategy	Controlled variable	Varied variable	
No control	Lean solvent loading	Steam flow to reboiler	Clear
Capture	Capture efficiency + Lean	Solvent flow rate +	Cleaned
efficiency	solvent loading	Steam flow to reboiler	
L/G	L/G ratio +	Solvent flow rate +	L/G
	Lean solvent loading	Steam flow to reboiler	Absorber PID Solvent flow
			Flue gas control CO ₂ rich
ethod			

The model applied II

- Power plant application
 - Steady state evaluation of power plant performance during full load and part load
 - Effects of controllers on power plant performance

Method

Capture system dynamics

Dynamic sensitivity analysis

- Amount of liquid in the system varied without varying flow rates or properties of the packed volumes
- Increased liquid mass \rightarrow slower system dynamics

Effects of process control

• Power plant load is ramped down from full load to 60%

Results

Interaction with connected systems

• Capture system acts like a buffer

Steam flow from power cycle

CO₂ flow to pipeline system

Results

Power plant application

Power plant application

- Evaluation of power plant performance based on steady-state modeling of Nordjyllandsvaerket in Denmark
 - Steam for capture system extracted between two intermediate pressure turbines
 - Full load and part load operation

Effects on power plant

CO₂ compression work and other mechanical work is not included in the power plant efficiency values

Conclusions

- The simulations show that the CO₂ capture process responds to load changes within few minutes
- Implementation of active control strategies improves capture system performance with respect to heat requirement
 - The response time of the system is generally lower in these cases
- Integration with the power plant results in an efficiency decrease in the range of 8-12 percentage points

Conclusions

Thank you for your attention!

Transient Behavior of Post Combustion CO₂ Capture Process

2nd IEA Post Combustion Capture Conference Bergen, Norway 17 September, 2013

Stefanía Ósk Garðarsdóttir
Chalmers University of Technology
Division of Energy Technology
Combustion and Carbon Capture Technologies

