Process design of post-combustion CO$_2$ capture from a natural gas combined cycle using Ca-looping process

R. Anantharaman, D. Berstad, K. Jordal
SINTEF Energy Research, Trondheim, Norway

Bergen, Norway
18th September 2013
Integrated Assessment in BIGCCS

- Systematic benchmarking of CO₂ capture processes using consistent boundary conditions to
 - Identify potential of capture processes
 - Provide directions for future research such as material development

- Multi-scale modeling of processes for integrated assessment
Ca-looping cycle for CO$_2$ capture

- Significant number of studies for capture from coal fired power plants

\[
\text{CaO} + \text{CO}_2 \leftrightarrow \text{CaCO}_3
\]

\[\Delta H^\circ_r = -178 \text{ kJ/mol}\]

Baker (1962)
NGCC with Ca-looping CO₂ capture

[Diagram showing a process flow for NGCC with Ca-looping CO₂ capture, including primary steam cycle, CO₂ compression, secondary steam cycle, gas turbine, carbonator, calciner, and cryogenic ASU.]
Ca-looping cycle model

- Simple steady state heat/mass balance model in Excel
- Model allows to identify effect of different operating parameters of the Ca-looping process on overall process
NGCC with Ca-looping CO$_2$ capture
Parameters for 90% capture rate

► Sorbent
 ▪ Calcite

► Carbonator
 ▪ Carbonation efficiency: 19.9%
 ▪ Carbonation temperature: 600°C

► Calciner
 ▪ Make-up ratio: 0.06
 ▪ Calciner efficiency: 100%
 ▪ Calciner temperature: 950°C

► NGCC, steam cycle and auxiliaries
 ▪ European Benchmarking Task Force documents

Preliminary parameters! These were changed subsequently based on experience and feedback.
NGCC with Ca-looping CO$_2$ capture
Two power generating units?

- Fuel fed to Calciner: ~38% of total fuel to process
- Power generation from Ca-Looping cycle: ~35% of total power

Sources of CO$_2$ captured

- Exhaust from NGCC: 47%
- Oxy-combustion in Calciner: 39%
- Calcined make-up sorbent: 14%
Reference NGCC with and without CO₂ capture

- European Benchmarking Task Force (EBTF) reference cases are used as reference cases in BIGCCS benchmarking work
- EBTF NGCC without capture:
 - Generic F class gas turbine with 38.5% efficiency
 - 3 pressure level steam cycle with reheat
- EBTF NGCC with capture
 - 90% capture ratio
 - MEA post-combustion capture
Reference NGCC with capture
Process Efficiency comparison

- NGCC without capture
- NGCC with MEA capture
- Base case
Process improvements
Heat integration

► Recuperator
Process improvements
Heat integration

► Recuperator
► Integration of CO$_2$ compression heat
► Use of advanced steam and super-critical steam cycle for secondary steam cycle
Process Improvements
Steam cycle

Standard

Advanced

Super-critical
Process improvements
Heat integration

► Recuperator
► Integration of CO$_2$ compression heat
► Use of advanced steam and super-critical steam cycle for secondary steam cycle
► Hot recycle
Process Improvements
Hot recycle
Process Efficiency comparison

- NGCC without capture
- NGCC with MEA capture
- Hot recycle
- CO₂ comp heat
- Sp Crit SC
- Adv SC
- Recuperator
- Base case
Sorbent properties and modeling

 ► Performance of the Ca-looping process is dependent on sorbent properties
 ▪ Calciner heat requirement and sorbent make up ratio among others
 ► Sorbent undergoes decay with each cycle of process causing decrease in sorption conversion
 ► Decay model proposed by Grasa and Abanades (2006) used

\[
q_{\text{recovery}} = \frac{1}{(1 - q_{\text{degrad}})^{-1} + q_{\text{degrad}}} + q_{\text{degrad}}
\]
Sorbent properties and modeling

4 classes of sorbents

- Untreated: such as calcite and dolomite
- Class I sorbents: lifetime of the natural Ca-based minerals improved by promoting the minerals with other elements or by simple processing with other inorganics
- Class II sorbents: supported Ca-based sorbents prepared by wet impregnation of a calcium containing solutions onto a porous substrate followed by calcination
- Class III sorbents: the third strategy used is often linked to nano-materials where sorbent nanoparticles of CaO, Li₂O, Na₂O, etc. are stabilised by other nano-sized phases such as ZrO₂, CeO₂, TiO₂, SiO₂, Al₂O₃, etc.
Sorbent properties and modeling

Untreated and Class I sorbents
Sorbent properties and modeling

Untreated and Class II sorbents
Effect of sorbent properties on overall system

- Dolomite vs. Synthetic CaO

- Relative change from calcite

- Make-up flow
- Recycle flow
- Flue gas flow
- CO2 compression
- Caliner heat input
- Cryogenic ASU
- Carbonator heat output
- 2nd steam cycle output
- Net electric eff.

- 10% Dolomite
- 0% Synthetic CaO

- 5%

- 20%
Process Efficiency comparison

- NGCC without capture
- NGCC with MEA capture
- CO$_2$ comp heat
- Recuperator
- Hot recycle
- Sp Crit SC
- Adv SC
- Synth CaO
- Dolomite

Efficiency

- 60%
- 55%
- 50%
- 45%
- 40%

International CCS Research Centre
Integration of Oxygen Transport Membranes

► Motivation
- Cryogenic ASU contributes to ~30% of energy penalty
- Theoretical separation work for O_2: 49 kWh/ton O_2
- Separation work in cryogenic ASU: 190-200 kWh/ton O_2

► Oxygen Transport Membranes (OTM)
- Dense ceramic membranes (metal oxides).
- Membrane operation based on mixed conduction of ions and electrons.
- Separates O_2 from air with 100% selectivity.
- Operating temperature range: 800-1000°C.

► Challenge
- Proper integration
- O_2 recovery rate from OTM low (30-60%)
Integration of Oxygen Transport Membranes
Integration of Oxygen Transport Membranes in Ca-looping cycle
Process Efficiency comparison

- NGCC without capture
- NGCC with MEA capture
- CO₂ comp heat
- Recuperator
- Base case
- Hot recycle
- Dolomite
- Synth CaO
- Adv SC
- Sp Crit SC
- OTM
Summary

► Process design of Ca-looping cycle for CO₂ capture from NGCC is an on-going activity in BIGCCS
► The efficiency of the process has been improved by 8.4% points using heat integration, advanced sorbents and integrating OTM in the process
► The Ca-looping process has potential to reduce energy penalty of the capture process
► The systematic procedure also provides pointers for sorbent development by analysing the effect of sorbent properties on the overall process
Further reading

Acknowledgements

This publication has been produced with support from the BIGCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, ConocoPhillips, Gassco, Shell, Statoil, TOTAL, GDF SUEZ and the Research Council of Norway (193816/S60).