SHELL CANSOLV
DEPLOYING CCS WORLDWIDE

PCCC2
Bergen, September 2013

Shell Cansolv

Paul-Emmanuel Just
R&D Team Lead
Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Companies over which Shell has joint control are generally referred to “joint ventures” and companies over which Shell has significant influence but neither control nor joint control are referred to as “associates”. In this presentation, joint ventures and associates may also be referred to as “equity-accounted investments”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect (for example, through our 23% shareholding in Woodside Petroleum Ltd.) ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management's expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell's products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell's 20-F for the year ended December 31, 2012 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, 19 April 2013. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov. You can also obtain these forms from the SEC by calling 1-800-SEC-0330.
AGENDA

- Shell Cansolv and Shell Projects
- The Journey to Boundary Dam Project
- Next Steps on CO2 Capture at Shell Cansolv
1.0 CANSOlv AND SHEll ProjEcts

Developing CCS projects globally
ROYAL DUTCH SHELL & CANSOLV

UPSTREAM
- Exploration and production of hydrocarbon
- 50% oil / 50% gas
- 3.4 million BOE per day
- 80% of RDS net earnings & CAPEX

DOWNSTREAM
- Production, supply distribution (retail) of petroleum products & chemicals
- Trading
- Maintain Shell Brand

PROJECTS & TECHNOLOGY
- Delivering major projects eg. > 500 mln CAPEX
- Providing differentiating technologies to Upstream and DS business & key Shell partners

Shell Cansolv

RDS 2012 Financial Results
- CFFO – $46 Billions (B)
- Net earnings – $25 B
- Dividends Redust. $11 B
- Net CAPEX $30 B

Fun facts
- Total oil production 85 mmb/d
- Canada #6 at 3.6 mmb/d
- Canada second largest oil reserves in the world

COPYRIGHT OF CANSOLV TECHNOLOGIES INC

NATURAL GAS: A DESTINATION FUEL
Shell developing CCS projects globally

Shell involvement in CCS Projects;
- Industrial scale projects in operation
- Industrial scale projects in construction
- Industrial scale projects planned
- Demonstration projects, joint industry partnerships

Demonstration projects, joint industry partnerships
Industrial scale projects in construction
Industrial scale projects in operation
Industrial scale projects planned
Demonstration projects, joint industry partnerships

Weyburn
Midale
TCM
Boundary Dam
Aberthaw
Quest
Peterhead
Gorgon
Otway

Shell Technology
Operator: Saskpower
SSE PETERHEAD - CCGT CO$_2$ CAPTURE AND SEQUESTRATION

- Completed Pre-FEED study for Scottish & Southern Energy
- Project co-funded by DECC (UK)
- Retrofit of a ~300MW CCGT to include CCS
- Sequestration of CO$_2$: Goldeneye (off-shore North Sea)
Location: South Africa
Scale: 170 tpd CO₂ capture
— 90% removal
Natural Gas Boilers
— Not CCGT’s
Construction complete: June 2013
Successful start-up: August 2013
CO₂ generated for on-site use
Strategy: Project makes client self-sufficient on steam and CO₂
COMPARISON BETWEEN CO2 AND SO2 CAPTURE PLANTS

Total Absorber Cross Sectional Area [m²]

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0

Xstrata CEZ
Lanxess
ConocoPhillips
DCU Coker
DCU FCCU
Chalco Boiler
IOCL
GDLY
RWE
Lanxess
SaskPower
SSE
Peterhead

2001
2002
2002
2006
2006
2009
2012
2013
2012
2013
2013
TBD

SO₂
CO₂
2.0
THE JOURNEY TO THE BOUNDARY DAM PROJECT

Project Scope and Lessons learned
- 1,000,000+ tpy CO$_2$ captured
- CO$_2$ sold to Cenevous for EOR
- SO$_2$ (~60 tpd) converted to acid & sold
- Overall investment: CAD 1.24BB
- Construction @ 85%+
- Start-up will be early 2014
Absorber - Breakdown

- Prescrubber section (higher corrosion resistance zone) quenches gas and removes some dust, chlorides and fluorides
- \(\text{SO}_2 \) Absorber removes \(\text{SO}_2 \)
- \(\text{CO}_2 \) Absorber removes \(\text{CO}_2 \)
- Water wash (cooled) is last line of defense - keeps amine from exiting the system
SASKPOWER BD3: CO$_2$ REGENERATOR

- One of the largest strippers worldwide
- 5 large Compabloc reboilers
- Equipped with MVR heat recovery
- Constructed offsite

8 meters
LESSON LEARNED #1: ABSORBER GEOMETRY

Detailed engineering reviews done to confirm compatibility and effectiveness, including:

- CFD analysis
- Value Engineering
- Aspen + design modeling
- Estimate TIC Cost comparison

Outcome: Design Validation

- CFD analysis confirmed expected performance and mechanical design
- Rectangular/Square geometry equivalent in process and superior in costs
LESSON LEARNED #2: ABSORBER MOC

Detailed engineering reviews done to confirm compatibility and effectiveness, including:

- Review of past corrosion coupon analysis
- Vendor qualification
- 3rd party specialist confirmations
- Estimate TIC Cost comparison

OUTCOME: MOC SELECTED

- Analysis and studies confirmed compatibility of alternate (to steel) MOC
- Concrete structure (with acid resistant lining) equivalent in process and superior in costs
Shell Cansolv supporting clients/partners in their Permits to Operate
Complete mapping of emission points and stream characterization
Generation of consistent HSE package
based on laboratory testing for:

- Toxicology
- Environmental fate
- Biodegradability
- Compatibility with PPE (gloves and cartridges)

Challenges: Lack of available data applicable for such a project

Outcomes: Data generated indicate that CANSOLV amine-based CO₂ Capture system is eco-friendly and can be operated with low HSE risk

Ecotox Example: Chronic toxicity results reported as the LC50 (trout, daphnia) or EC50 (growth, yield for algae).

<table>
<thead>
<tr>
<th>Chemical</th>
<th>7-day Larval Growth & Survival Pimephales promelas</th>
<th>3-brood Reproduction & Survival Ceriodaphnia dubia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Survival (LC50, mg/ L)</td>
<td>Growth (IC25, mg/ L)</td>
</tr>
<tr>
<td>Amine 1</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Amine 2</td>
<td>> 100</td>
<td>> 100</td>
</tr>
<tr>
<td>Nitrosamine 1</td>
<td>> 100</td>
<td>> 100</td>
</tr>
</tbody>
</table>

95% Confidence interval and NOEC reported in brackets where applicable.
SASKPOWER BD3 150MW SO_2/CO_2 CAPTURE

Unique Cost savings features employed

- Material on construction: Ceramic/carbon tile lined concrete absorbers & lean amine tank
- Rectangular tower to save on plot space and optimize packing design/installation
- Integrate Heat Recovery between SO_2 and CO_2 systems for ultimate energy performance

Unique plant permitting experience (operation & environmental)

Unique proven constructability: Only commercial scale project worldwide
3.0

NEXT STEPS IN CO₂ CAPTURE AT SHELL CANSOLV

What else we’re doing...
TESTING STRATEGY FOR CO₂ CAPTURE TECHNOLOGY

Scale (ton CO₂/day)

- Lab bench
- AVU
- Lab Pilot
- Pilot External
- Demo
- 170
- 50
- 3,300

Discover
Develop
Demonstrate
Deploy

Copyright of Cansolv Technologies Inc
PILOTING NEW DC-201 FOR CO$_2$ AT NCCC, ALABAMA, USA

Pilot unit: 10ton CO$_2$/day (0.5MWe slipstream)
Operated by the National Carbon Capture Center

Absorber
overall dimensions 35 m tall by 0.64 m OD diameter
3 packing sections of 6.1 m each
2 intercooling stages

Capacity: X2 over MEA

MEA 30 to 35wt%

STEAM
-35% over MEA

13% CO$_2$ in inlet gas
Carbonate Slurry - 3rd Generation Post Combustion Technology

- Pilot plant Shell Technology Center Amsterdam, Capacity of pilot plant max 25 kg/d CO₂
- **Demonstrated continuous operation** for precipitating carbonate process
- **Energy efficiency confirmed** for regeneration in the lower end of the 2.2 -4 MJ/kg through pilot plant operation and detailed process modeling
- **Additional energy efficiency improvements identified**

Chemistry

1. \(\text{CO}_2 \text{(aq)} + \text{H}_2\text{O} + \text{CO}_3^{2-} \rightarrow 2 \text{HCO}_3^- \)
2. \(\text{K}^+ + \text{HCO}_3^- \rightarrow \text{KHCO}_3 \)

An accelerator is used to enhance mass transfer of CO₂ to liquid phase