Piperazine and nitrosamine degradation in pilot plants

Paul Nielsen
Texas Carbon Management Program
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
September 18, 2013
Outline

- Introduction
 - Description of pilot plants and cycling apparatus
 - Safe shipping of Tarong samples

- Results
 - Nitrosamine accumulation
 - Solvent oxidation
 - Corrosion
 - Flue gas contaminant accumulation

- Conclusions
1.2 kPa CO$_2$
Volatile amines

\(\text{NH}_3 \)
Increased emissions

150 bar CO$_2$

12 kPa CO$_2$

5 kPa O$_2$

1 – 5 ppm NO$_2$

SO$_2$, NO$_x$, HCl, Fly ash

Aerosols

D.O., peroxides

Nitrite

Sulfate, nitrate, Cl, Hg, Se, As, Cr, etc.

Absorber

Rich

Nitrosamine formation & decomposition

Stainless steel metal ions: Fe$^{2+}$, Mn$^{2+}$

Corrosion

Thermal degradation: Carbamate polymers, S$_{N2}$

High temp oxidation: \(\text{NH}_3 \), formate, heat stable salts,
Benefits:
- Faster absorption rate, 2x capacity of MEA
- Thermally stable beyond 150 °C: far greater energy performance
- More resistant to oxidation than MEA

Drawbacks:
- More viscous than MEA
- Limited solubility window
- >2x price of MEA per tonne
PZ Pilot plants/cycled degradation apparatus

<table>
<thead>
<tr>
<th></th>
<th>Tarong</th>
<th>PP2</th>
<th>SRP</th>
<th>HTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flue gas</td>
<td>Coal</td>
<td>Coal</td>
<td>Air + CO₂</td>
<td>Air + CO₂</td>
</tr>
<tr>
<td>M_W<sub>e</sub></td>
<td>0.1</td>
<td>N/A</td>
<td>0.1</td>
<td>Bench scale</td>
</tr>
<tr>
<td>O_2 (kPa)</td>
<td>5</td>
<td>5</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>SO_2 (ppm<sub>v</sub>) (avg)</td>
<td>0.6</td>
<td><0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO_2 (ppm<sub>v</sub>) (avg)</td>
<td>1.3</td>
<td>1 – 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NO_x (ppm<sub>v</sub>) (avg)</td>
<td>~200</td>
<td>Controlled</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Materials of construction</td>
<td>SS304</td>
<td>SS</td>
<td>SS304, some CS</td>
<td>SS316, plastic, glass</td>
</tr>
<tr>
<td>Stripper T_{op}</td>
<td>120 / 155 C</td>
<td>150 C</td>
<td>135 / 150 C</td>
<td>120 – 160 C</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
<td>1 wt% Inh A</td>
<td>Run w/ fresh 8 m PZ and degraded SRP solvent</td>
</tr>
</tbody>
</table>

Notes

- Run w/ fresh 8 m PZ and degraded SRP solvent
Safe shipping of Tarong samples

- Sealed in 30 mL vials with tape, then placed in Ziploc bags and surrounded by packing material
- Opened and stored in fume hood at room temperature
- No samples leaked in transit
Results
1-Nitroso-PZ (MNPZ)

Tarong 1.3 ppm NO₂

120 °C 155 °C

PP2 150 °C, 1 – 5 ppm NO₂
Oxidation at Tarong

No significant accumulation of thermal degradation products (< 10 mmol/kg)

PZ + O₂ → 2-PZOH → EDA → Formate
Catalyzed by metal ions (corrosion)

Stainless steel metal ions (SSM) (mmol/kg)

Oxidation products (mmol/kg)

Cycles

120 °C, 155 °C
Iron accumulation

Fresh 8 m PZ in HTOR 40 – 150 °C

PP2

155 °C

0.3 mM Fe$^{2+}$ added

SRP

SRP in HTOR 40 – 150 °C 60% Inhibited

“Corrosion event”
Formate accumulation

Fresh 8 m PZ in HTOR 40 – 150 °C

“Corrosion event”

SRP in HTOR 40 – 150 °C 40 – 70% Inhibited

0.3 mM Fe²⁺ added

Tarong

PP2

155 C
Contaminant (mmol/kg)

Flue gas contaminants

Cycles

Sulfate

Nitrate

Tarong

155 °C

PP2

Sulfate

Nitrate
Conclusions

- MNPZ accumulation in PZ pilot plants controlled by thermal degradation to less than 3 mmol/kg at 150 °C
- Oxidation dominates over thermal degradation as cause of amine loss
 - Ammonia and formate final products
 - Ethylenediamine and 2-PZOH major intermediates
- Rate of formate accumulation linked to accumulation of stainless steel metal ions
- Corrosion and oxidation at SRP inhibited by Inh A
Questions?

Paul Nielsen
Texas Carbon Management Program
pnielsen3@utexas.edu

CSIRO wishes to acknowledge financial assistance provided through Australian National Low Emissions Coal Research and Development (ANLEC R&D). ANLEC R&D is supported by Australian Coal Association Low Emissions Technology Limited and the Australian Government through the Clean Energy Initiative.
Open to sponsors of the Texas Carbon Management Program
And to non-profit institutions with presentations
Titles and abstracts due October 15, 2013 to gtr@che.utexas.edu