Overview of degradation compounds from amines and factors influencing them

Solrun Johanne Vevelstada,b, Andreas Grimstvedtb, Eirik Falck da Silvab and Hallvard F. Svendsena

aNorwegian University of Science and Technology, 7491 Trondheim, Norway
bSINTEF Materials and Technology, 7465 Trondheim, Norway
Outline

• Introduction
• Experimental procedure
 – Degradation setups
 – Degradation compounds - analyses
• Results
 – Degradation compounds
 – Comparison
 • Esbjerg
 • SDR-rig
• Summary
Introduction

• Amine degradation causes problems
 – Solvent loss
 – Corrosion
 – Fouling
 – Foaming
 – Emission of degradation compounds

• Several analytical techniques necessary for identification of degradation compounds
 – GC-MS
 – LC-MS
 – IC
CO$_2$ absorption process

Oxidative degradation

Thermal degradation with CO$_2$

Experimental

- Oxidative degradation rigs
- Thermal degradation cylinders
Closed batch (CB) setup

a Valve for loading solution into the system
b Liquid pump
c Valve for taking sample
d Reactor
e Packing area
f Gas pump
g Cooler before gas analysers
h Flow meters for the CO₂ and O₂ analysers
i Valve to empty the reactor
j Water lock to avoid pressure build up

Open batch (OB) setup

a Flow meters for O₂/air and CO₂
b Gas pump
c Saturation vessel
d Reactor
e Coolers
f Gas bubble bottles
Thermal degradation

- Close batch cylinders – SS316
- Oxidative degraded solutions (from OB or CB)
- 135 °C for 5 weeks
- One cylinder taken out every week
- Leakages tested weighing cylinders before and after

www.ntnu.no
Experiment

• Oxidative degradation (50-55 and 75 °C):
 – OB: fresh 30 wt% MEA, $\alpha = 0.4$ mole CO$_2$ per mole amine
 – CB: fresh 30 wt% MEA, $\alpha = 0.4$

• Thermal degradation with CO$_2$ (135 °C):
 – fresh 30 wt% MEA, $\alpha = 0.4$ Oxidatively degraded end samples from both CB and OB setup (MEA)

• Main analyses: LC-MS and IC
Degradation cpds - quantified

Liquid phase

HEF

HEA

BHEOX

HEPO

OZD

HEI

HEGly

NO$_2^-$ NO$_3^-$

Oxalate Formate

www.ntnu.no
Degradation cpds - quantified

Liquid phase

HEF
HEPO
OZD
HEA
HEI
BHEOX
HEGly

NO₂⁻
NO₃⁻
IC
Oxalate
Formate
Results
<table>
<thead>
<tr>
<th>Oxidative</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2 T Setup (OB toward CB2)</td>
<td>Used solvent "Fresh" solvent</td>
</tr>
</tbody>
</table>

Primary degradation compounds

<p>| NO$_2^-$ | ↑ | ↑ | ↑ | --- | --- |
| NO$_3^-$ | ↑ | ↑ | ↓ | --- | --- |
| Formate | ↑ | ↑ | → | ↑ | ↑ |
| Oxalate | ↑ | ↑ | ↓ | --- | --- |</p>
<table>
<thead>
<tr>
<th>Oxidative</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂</td>
<td>T</td>
</tr>
<tr>
<td>OZD</td>
<td>↑️️</td>
</tr>
<tr>
<td>HEF</td>
<td>↑️️</td>
</tr>
<tr>
<td>HEA</td>
<td>↑️️</td>
</tr>
<tr>
<td>BHEOX</td>
<td>↑️️</td>
</tr>
<tr>
<td>HEGly</td>
<td>→️️</td>
</tr>
<tr>
<td>HEPO</td>
<td>→️️</td>
</tr>
<tr>
<td>HEI</td>
<td>↑️️</td>
</tr>
</tbody>
</table>

Secondary degradation compounds

<table>
<thead>
<tr>
<th></th>
<th>Oxidative</th>
<th>Thermal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O₂</td>
<td>T</td>
</tr>
<tr>
<td>OZD</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>HEF</td>
<td>↑</td>
<td>→</td>
</tr>
<tr>
<td>HEA</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>BHEOX</td>
<td>↑</td>
<td>→</td>
</tr>
<tr>
<td>HEGly</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>HEPO</td>
<td>→</td>
<td>→</td>
</tr>
<tr>
<td>HEI</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>NO₂⁻</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>NO₃⁻</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Formate</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>Oxalate</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
HEI

Absorber conditions

Stripper conditions

Blue: Closed batch setup

Green: Open batch setup

Grey: Only stripper conditions

Concentration (mmol/L)

Time (days)

50-55 °C

75 °C

55 °C
HEA

Absorber conditions

Stripper conditions

Blue: Closed batch setup

Green: Open batch setup

Grey: Only stripper conditions

Concentration (mmol/L)

75 °C

50-55 °C

55 °C

Time (days)
MEA
secondary degradation compounds

Concentration (µg/mL)

HeGly HEPO HEF HEI

Rich MEA Lean MEA Lean MEA

Esbjerg campaign

CB_1 CB_1 Th OB_1 OB_1 Th Th

3 weeks 5 weeks 3 weeks 5 weeks 10 weeks

11 weeks 20 weeks

MEA secondary degradation compounds

- CB_1: 3 weeks
- CB_1 Th: 5 weeks
- OB_1: 3 weeks
- OB_1 Th: 5 weeks
- Th: 10 weeks

Esbjerg campaign

Rich MEA
Lean MEA

Concentration (µg/mL)

OZD BHEOX HEA

SDR / Ox-Thermal

- SDR (Einbu et al. 2013) and Ox/thermal ratio measured relative to Esbjerg (20 weeks)
- The relative trends are comparable for most of the degradation compounds
- Exceptions might be due to limiting amounts of intermediates for some of the degradation compounds in Ox/thermal

Summary

- Degradation compounds behaviour for thermal degradation on oxidative degraded solutions mimicks the behaviour of these compounds in fresh MEA solutions
- Lab experiments (separated and combined) seem to mimick formation of degradation compounds seen in pilot or cycled experiments (SDR)
Summary

- Degradation compounds:
 - OZD increases with oxygen content and higher temperature seems to favour further reaction of OZD to other compounds
 - BHEOX increases with oxygen content and seems to decompose at temperatures between 75 to 135 °C
 - HEA increases with oxygen content and temperature - intermediate formation favoured or the reaction is directly influenced by increasing temperature
 - HEGly seems to increase less with temperature than HEPO and a reduction was seen for ox-thermal. Increase over time for SDR. Limited by intermediates in the closed cylinder experiment?
 - HEPO shows a continuous increase with temperature – the reaction itself or formation of intermediate favoured by temperature
 - HEF: Increases over time SDR, not seen for thermal, limitated by intermediates?
 - HEI: HEI formation more favoured in separated degradation experiments (ox). Formation favoured by more closed setups, likely because of volatile intermediate present in solution
References

• Eide-Haugmo, I., 2011. Environmental impacts and aspects of absorbents used for CO₂ capture, Department of Chemical Engineering. Norwegian University of Science and Technology, Trondheim, p. 365.

Acknowledgement

The work was performed within the SOLVit project under the strategic Norwegian research program CLIMIT.

The author gratefully acknowledge financial support from the partners in SOLVit: Aker Clean Carbon, EON, EnBW, Gassnova and the Research Council of Norway for their support.

Thank you
More information

Chemical stability, nitrogen balance and degradation compounds

