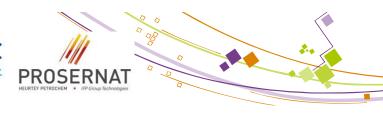
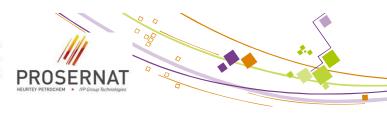
Demonstration of the DMX[™] process description of the Octavius SP3 project



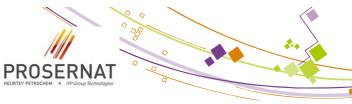
IEA-GHG 2nd Post-Combustion Capture Conference

17th -20th September 2013, Bergen, Norway

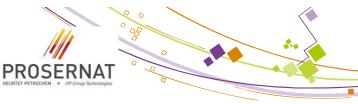


Outlook

- Octavius project
- DMXTM process
- SP3 : Demonstration of the DMX[™] process
- Conclusions & future work


OCTAVIUS in Brief

- Optimisation of CO₂ Capture Technology Allowing
 Verification and Implementation at Utility Scale
 FP7 Project (Call DG Energy 2011)
- Start-up: 01/03/2012
- Duration: 60 Months
- Coordinator IFPEN (Paul BROUTIN)
- Total Budget: 13.56 M€
- EU Funding: 7.96 M€

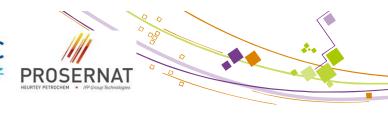

17 Partners + 1 Sponsor

No	Name	Short name	Country	Project entry month ¹⁰	Project exit month
1	IFP Energies nouvelles	IFPEN	France	1	60
2	NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK - TNO	TNO	Netherlands	1	60
3	STIFTELSEN SINTEF	SINTEF	Norway	1	60
4	NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU	NTNU	Norway	1	60
5	INSTITUT NATIONAL DE L'ENVIRONNEMENT ET DES RISQUES INERIS	INERIS	France	1	60
6	DANMARKS TEKNISKE UNIVERSITET	DTU	Denmark	1	60
7	TECHNISCHE UNIVERSITAET HAMBURG-HARBURG	TUHH	Germany	1	60
8	E.ON NEW BUILD & TECHNOLOGY LIMITED	E.ON	United Kingdom	1	60
9	EnBW Kraftwerke AG	EnBW.KWG	Germany	1	60
10	DOOSAN POWER SYSTEMS LIMITED	DOOSAN	United Kingdom	1	60
11	Enel Ingegneria e Innovazione SpA	ENEL	Italy	1	60
12	ESKOM HOLDINGS LTD	ESKOM	South Africa	1	60
13	BELGISCH LABORATORIUM VAN DE ELEKTRICITEITSINDUSTRIE	Laborelec/GDF SUEZ	Belgium	1	60
14	ELECTRICITE DE FRANCE S.A.	EDF	France	1	60
15	PROSERNAT SA	PROSERNAT	France	1	60
16	ECOMETRIX AFRICA LTD	EcoMetrix	South Africa	1	60
17	A.V. TOPCHIEV INSTITUTE OF PETROCHEMICAL SYNTHESIS - RUSSIAN ACADEMY OF SCIENCES	TIPS	Russian Federation	1	60

Sub-Project SP3 Sponsor: TOTAL (F)

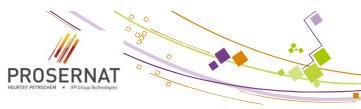
OCTAVIUS Organisation

2 main technical Sub-Projects


- SP2 dedicated to demonstration of operability and flexibility aspects of first generation processes to be used for first full scale demo plant (ROAD and Porto Tolle Projects)
- SP3 dedicated to the demonstration of the DMXTM process
- 2 independent Subprojects

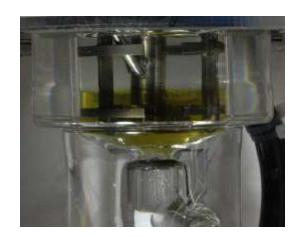
a R&D Sub-Project

 SP1 will support SP2 & SP3 and will also include crosscutting issues such as benchmarking activities

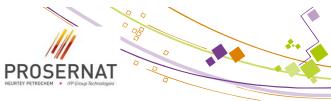


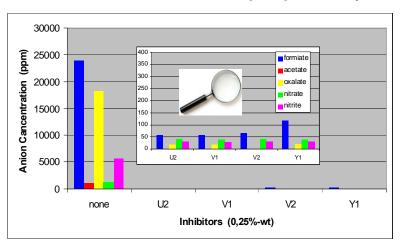
Outlook

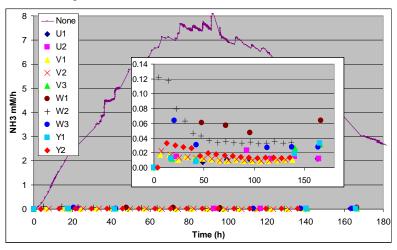
- Octavius project
- DMX[™] process
- SP3 : Demonstration of the DMX[™] process
- Conclusions & future work



Post-combustion capture @ IFP Energies nouvelles


- Development of new PCC processes
 - G1 : industrial pilot tests => commercialization
 - HiCapt+™: 40 wt.% MEA + additives
 - G2 : R&D developments => industrial pilot tests
 - DMXTM
 - G3 : laboratory studies proof of concept
 - new chemistry solvents, sorbents, hydrates...
 - Development of new technologies
 - gas/liquid contacting devices ...

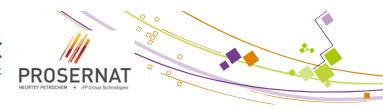



HiCapt+ process

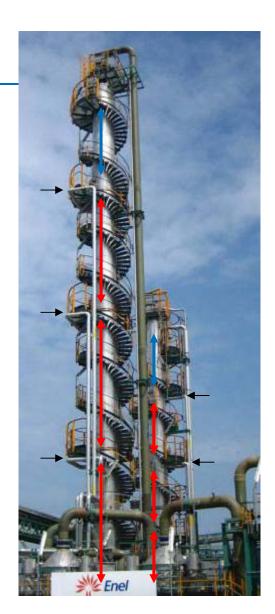
- Degradation tests
 - very good performances of the oxidative inhibitor

MEA 40 wt % after 1000 h mini-pilot test (with and without inhibitor)

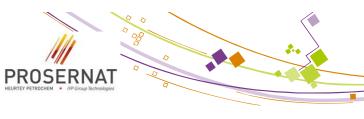
- Corrosion tests
 - Identification of materials with no corrosion in presence of the oxidative inhibitor (e.g. Duplex steel)
 - Price difference is very small (higher cost but less material since better mechanical properties) + availability of material is industrial



MEA 30% at 80 C under air + CO₂ during 7 days



Pilot plant presentation Main Characteristics


CCS unit – Main equipments

- Absorber
 - Φ i = 1.5 m / H_{LT} = 45 m
 - 3 stages solvent inlet
- Stripper
 - Φ i = 1.3 m / H_{LT} = 31 m
 - Reboiler : Kettle type ~ 1 to 3 MWth
- Solvent / Solvent cross heat exchanger
 - Plates type

HiCapt+ main conclusions

Long run industrial pilot test main results (Enel – Brindisi)

■ Test duration : 380 h

■ CO₂ prod. : 2 327 kg/h

■ Efficiency: 89,7 %

■ Loadings : $\alpha_L = 0.23 \Rightarrow \alpha_R = 0.48$

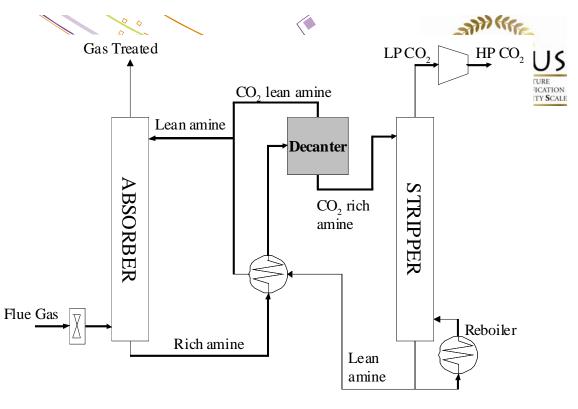
■ Energy : ~ 3,02 GJ/t_{CO2}

in good agreement with process simulations

Lab and mini-pilot test main results (IFPEN)

- use of additives
- no or little degradation
- much lower emissions
- no corrosion with Duplex (even in hot regions)

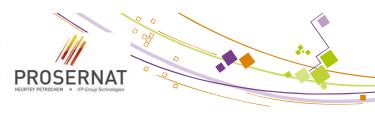
ready for commercialization



CO_2

DMX-1™: a low stripping, low heat of reaction, high capacity demixing solvent

+ lower degradation (and further lower emissions => interest in HP stripper) // no corrosion

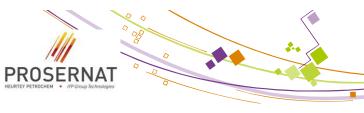

CO₂ lean phase

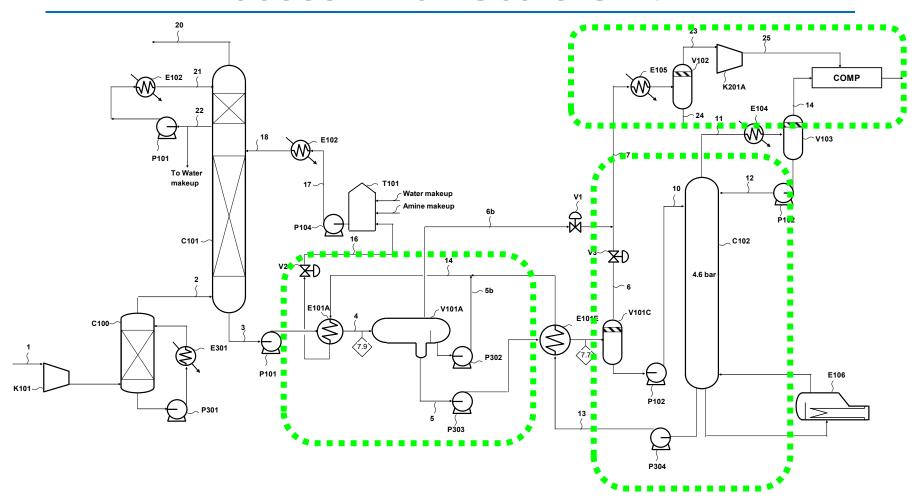
CO₂ rich phase

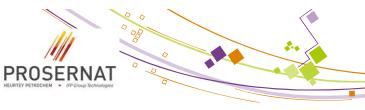
2.5 – 2.1 GJ/ton CO₂ **-20-30** % in CO₂ total cost

Scientific & Technical information

- VLLE data + adapted thermodynamic model
- Degradation / Emissions / Corrosion
- Operational issues
- Kinetics & Mass transfer performances
- Laboratory and mini-pilot tests
- Process simulations / cost evaluations

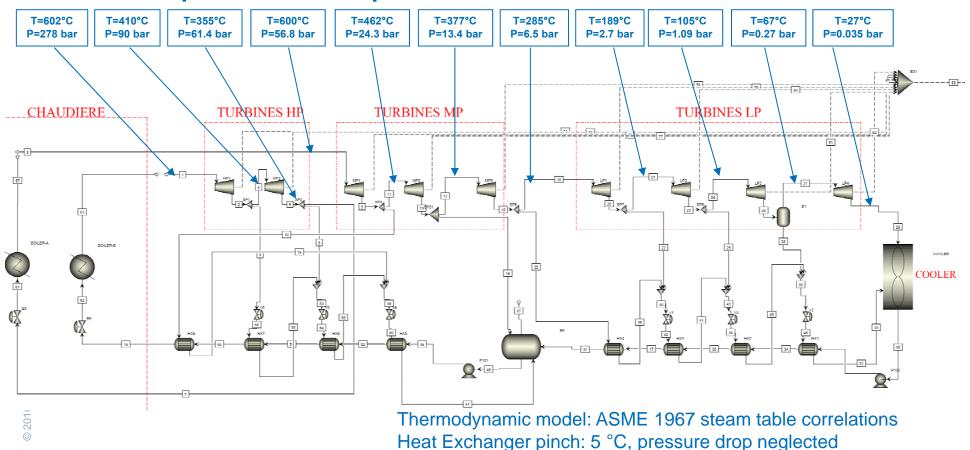


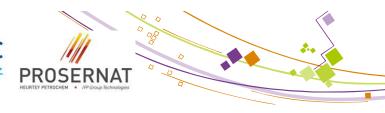




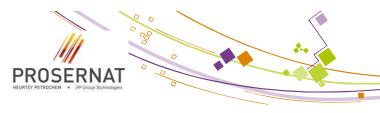
DMX-1 Process – Full Scale Unit PFD

2010 - IFP Energies nouvelles




Steam Cycle Simulation: IFPEN model

Temperature and pressure levels available



Outlook

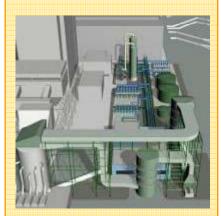
- Octavius project
- DMX[™] process
- SP3 : Demonstration of the DMX[™] process
- Conclusions & future work

Pilot

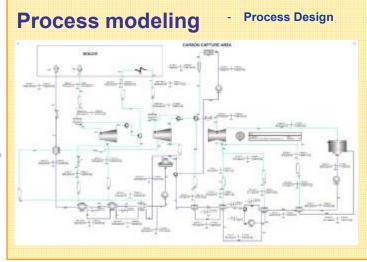
Methodology

From lab to Pilot demonstration

Process testing Analytical methodologies development



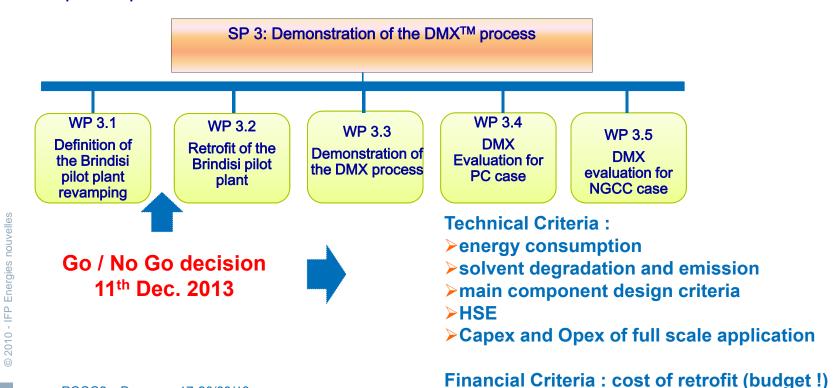
Flue gases: 10.000 Nm³/h CO₂: 2500 kg/h

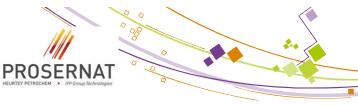


- Validation of design
- Emissions measurement and waste characterization
- Development and testing modeling tools

Full scale feasibility study

- Criteria for technology scale-up
- Full scale application Capex and Opex evaluation (cost of CO2 avoided)
- Basic engineering




SP3 Structure & Objectives

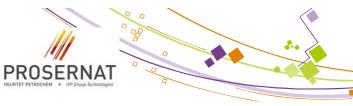
SP3 Objectives

□ The main objective of SP3 is to demonstrate the DMX TM process on pilot scale and study its application to coal power station and NGCC units with industrial pilot test on the Enel's coal fired power plant of Brindisi.

SP3 Work Packages Description – WP3.1

WP 3.1: Definition of the Brindisi pilot plant revamping

Participants: IFPEN, Enel, Laborelec/GDF SUEZ, Prosernat

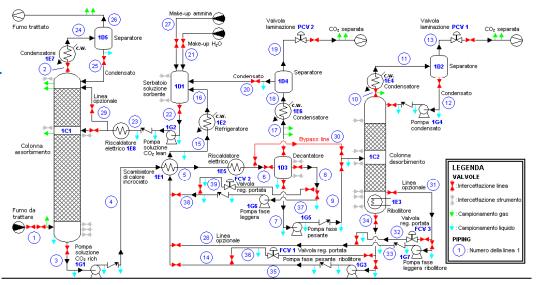

Objectives

- **Define modifications** to be carried out on Enel Brindisi CO₂ capture pilot plant to test DMX
- Design and Estimate the cost of the pilot revamping

Task

- 3.1.1 Experimentation of DMX on Enel minipilot at Brindisi lab facilities and at IFPEN research centre
- 3.1.2 Experimentation at IFPEN on decantation rate on a representative cold mock-up
- 3.1.3 Preliminary process study- full scale case
- 3.1.4 FEED for Enel CO₂ capture pilot plant revamping
- 3.1.5 Cost estimation of revamping

Minipilot activities - Enel mini-pilot

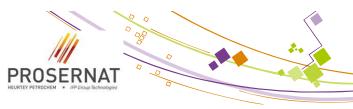

Brindisi pilot:

Sensitivity test: to optimize the mini-pilot plant operating conditions

Long run test: focused on the study of solvent's degradation / emissions in the optimized conditions.

Flue gas condition

14.12
5.13
25
10
130


Brindisi pilot:

Emissions measurements: participation of

Laborelec via FTIR measurements (with calibration at IFPEN)

Lab & Minipilot activities – IFPEN

Target:

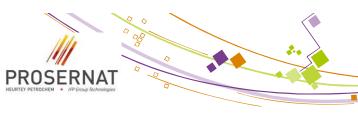
- ✓ Demixing test to decanter design
- √ Capture efficiency (lean and reach loadings)
- √Solvent degradation
- ✓ Emission
- ✓ Corrosion

IFPEN Lab test

- ✓ VLE data + adapted thermodynamic model
 - Degradation / Corrosion and other operational issues
 - Kinetics & Mass transfer performances
 - L/L decantation effect of degradation

Bottle-tests decantation Ultaturrax – 11,000 rpm

	dmax (mm)
fresh case	3.9
degraded	2.5


Semi-open batch reactor degradation tests T = 80°C, Patm PO2 = 200mbar PCO2 = 4.6mbar Vsolvent = 130 ml 1 week

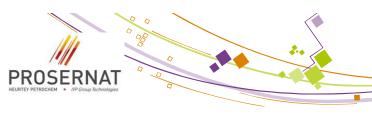
	% amine loss ^a	[formiate] ppm ^b
DMX-1	6%	100
MEA	58%	19000
Ratio	0.10	0.005

a : GC analysisb : IC analysis

© 2010 - IFP Energies nouvelles

Lab & Minipilot activities – IFPEN

Target:


- ✓ Demixing test to decanter design
- √ Capture efficiency (lean and reach loadings)
- √Solvent degradation
- ✓ Emission
- ✓ Corrosion

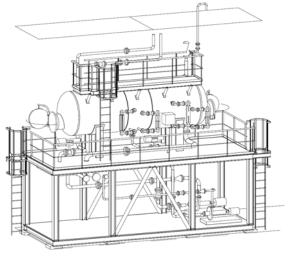
IFPEN mini-pilot

- ➤ Mechanical/validation tests: T1 2013
- ➤ Operation on a 24/7 basis
- ➤ Long run tests on MEA (reference case) : 1000 hrs
- ➤ Long run tests on DMX : in progress
- ➤ Operation on representative synthetic gas (SOx/NOx)

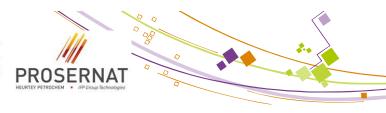
Full scale application and costing

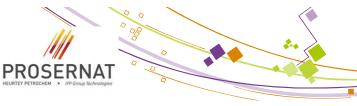
Preliminary process study for application on a 660 MWe power plant, comparison between two cases:

- **≻MEA 30%** (benchmarking)
- > DMX
- Assessment of the energy consumption :
 - Process scheme definition (steam turbine and capture process):
 - > Definition of the steam turbine scheme and optimization for the two cases
 - Simulation and evaluation of the impact on the thermal cycle for each capture process
 - CAPEX and OPEX estimation:
 - Definition of the method
 - Cost estimation with accuracy ± 30%
 - Final comparison based on :
 - > LCOE
 - Cost of CO2 avoided



FEED study for Enel's pilot revamping


- Pre-FEED in 2012 with strong interaction between **ENEL / IFPEN / PROSERNAT teams**
- FEED: ENEL engineering + PROSERNAT with support of IFPEN
- Kick-Off Meeting in Milan (28th May 2013)
 - basis of design
 - Heat and Mass Bances
 - PFD PID
 - piping classes
 - list of chemicals
 - Process Data Sheets of main/retrofitted equipments
 - Instrument list + controls
 - Plot plan
 - Operating manual
 - Cost estimation
 - HAZOP meeting (30th Sept. 2nd Oct. 2013)
 - Final documents for November

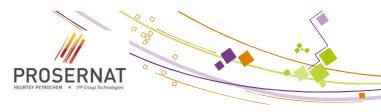


Outlook

- Octavius project
- DMXTM process
- SP3 : Demonstration of the DMX[™] process
- Conclusions & future work

Conclusions & perspectives

Conclusions


- HiCapt+: a G1 process (MEA 40wt.% + proprietary oxidation inhibitor + material recommendation) => PROSERNAT
- DMX-1[™] : a promising G2 process under development for reducing energy penalty
- long duration mini-pilot tests + FEED study for Enel's pilot retrofit under progress

Future steps

- Octavius EU project Go/NoGo milestone Dec. 2013 (technical – financial criteria – budget !)
- tests of DMX-1 on Enel's Brindisi industrial pilot for further evaluation on full scale cases – tests in 2015-2016
- process ready for commercialization T1 2017

Thank you!

Ludovic.Raynal@ifpen.fr