Demonstration of the DMX[™] process description of the Octavius SP3 project IEA-GHG 2nd Post-Combustion Capture Conference 17th -20th September 2013, Bergen, Norway ## **Outlook** - Octavius project - DMXTM process - SP3 : Demonstration of the DMX[™] process - Conclusions & future work ### **OCTAVIUS** in Brief - Optimisation of CO₂ Capture Technology Allowing Verification and Implementation at Utility Scale FP7 Project (Call DG Energy 2011) - Start-up: 01/03/2012 - Duration: 60 Months - Coordinator IFPEN (Paul BROUTIN) - Total Budget: 13.56 M€ - EU Funding: 7.96 M€ ## 17 Partners + 1 Sponsor | No | Name | Short name | Country | Project entry
month ¹⁰ | Project exit
month | |----|---|-----------------------|--------------------|--------------------------------------|-----------------------| | 1 | IFP Energies nouvelles | IFPEN | France | 1 | 60 | | 2 | NEDERLANDSE ORGANISATIE VOOR TOEGEPAST
NATUURWETENSCHAPPELIJK ONDERZOEK - TNO | TNO | Netherlands | 1 | 60 | | 3 | STIFTELSEN SINTEF | SINTEF | Norway | 1 | 60 | | 4 | NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET NTNU | NTNU | Norway | 1 | 60 | | 5 | INSTITUT NATIONAL DE L'ENVIRONNEMENT ET DES RISQUES INERIS | INERIS | France | 1 | 60 | | 6 | DANMARKS TEKNISKE UNIVERSITET | DTU | Denmark | 1 | 60 | | 7 | TECHNISCHE UNIVERSITAET HAMBURG-HARBURG | TUHH | Germany | 1 | 60 | | 8 | E.ON NEW BUILD & TECHNOLOGY LIMITED | E.ON | United Kingdom | 1 | 60 | | 9 | EnBW Kraftwerke AG | EnBW.KWG | Germany | 1 | 60 | | 10 | DOOSAN POWER SYSTEMS LIMITED | DOOSAN | United Kingdom | 1 | 60 | | 11 | Enel Ingegneria e Innovazione SpA | ENEL | Italy | 1 | 60 | | 12 | ESKOM HOLDINGS LTD | ESKOM | South Africa | 1 | 60 | | 13 | BELGISCH LABORATORIUM VAN DE ELEKTRICITEITSINDUSTRIE | Laborelec/GDF
SUEZ | Belgium | 1 | 60 | | 14 | ELECTRICITE DE FRANCE S.A. | EDF | France | 1 | 60 | | 15 | PROSERNAT SA | PROSERNAT | France | 1 | 60 | | 16 | ECOMETRIX AFRICA LTD | EcoMetrix | South Africa | 1 | 60 | | 17 | A.V. TOPCHIEV INSTITUTE OF PETROCHEMICAL SYNTHESIS -
RUSSIAN ACADEMY OF SCIENCES | TIPS | Russian Federation | 1 | 60 | **Sub-Project SP3 Sponsor: TOTAL (F)** ## **OCTAVIUS Organisation** ## 2 main technical Sub-Projects - SP2 dedicated to demonstration of operability and flexibility aspects of first generation processes to be used for first full scale demo plant (ROAD and Porto Tolle Projects) - SP3 dedicated to the demonstration of the DMXTM process - 2 independent Subprojects ## a R&D Sub-Project SP1 will support SP2 & SP3 and will also include crosscutting issues such as benchmarking activities ## **Outlook** - Octavius project - DMX[™] process - SP3 : Demonstration of the DMX[™] process - Conclusions & future work # Post-combustion capture @ IFP Energies nouvelles - Development of new PCC processes - G1 : industrial pilot tests => commercialization - HiCapt+™: 40 wt.% MEA + additives - G2 : R&D developments => industrial pilot tests - DMXTM - G3 : laboratory studies proof of concept - new chemistry solvents, sorbents, hydrates... - Development of new technologies - gas/liquid contacting devices ... ## HiCapt+ process - Degradation tests - very good performances of the oxidative inhibitor MEA 40 wt % after 1000 h mini-pilot test (with and without inhibitor) - Corrosion tests - Identification of materials with no corrosion in presence of the oxidative inhibitor (e.g. Duplex steel) - Price difference is very small (higher cost but less material since better mechanical properties) + availability of material is industrial MEA 30% at 80 C under air + CO₂ during 7 days ## Pilot plant presentation Main Characteristics ### CCS unit – Main equipments - Absorber - Φ i = 1.5 m / H_{LT} = 45 m - 3 stages solvent inlet - Stripper - Φ i = 1.3 m / H_{LT} = 31 m - Reboiler : Kettle type ~ 1 to 3 MWth - Solvent / Solvent cross heat exchanger - Plates type ## HiCapt+ main conclusions Long run industrial pilot test main results (Enel – Brindisi) ■ Test duration : 380 h ■ CO₂ prod. : 2 327 kg/h ■ Efficiency: 89,7 % ■ Loadings : $\alpha_L = 0.23 \Rightarrow \alpha_R = 0.48$ ■ Energy : ~ 3,02 GJ/t_{CO2} in good agreement with process simulations ### Lab and mini-pilot test main results (IFPEN) - use of additives - no or little degradation - much lower emissions - no corrosion with Duplex (even in hot regions) ready for commercialization #### CO_2 DMX-1™: a low stripping, low heat of reaction, high capacity demixing solvent + lower degradation (and further lower emissions => interest in HP stripper) // no corrosion CO₂ lean phase CO₂ rich phase 2.5 – 2.1 GJ/ton CO₂ **-20-30** % in CO₂ total cost ## Scientific & Technical information - VLLE data + adapted thermodynamic model - Degradation / Emissions / Corrosion - Operational issues - Kinetics & Mass transfer performances - Laboratory and mini-pilot tests - Process simulations / cost evaluations ## DMX-1 Process – Full Scale Unit PFD 2010 - IFP Energies nouvelles ## Steam Cycle Simulation: IFPEN model Temperature and pressure levels available ## **Outlook** - Octavius project - DMX[™] process - SP3 : Demonstration of the DMX[™] process - Conclusions & future work **Pilot** ## Methodology #### From lab to Pilot demonstration **Process testing Analytical methodologies** development Flue gases: 10.000 Nm³/h CO₂: 2500 kg/h - Validation of design - Emissions measurement and waste characterization - Development and testing modeling tools #### Full scale feasibility study - Criteria for technology scale-up - Full scale application Capex and Opex evaluation (cost of CO2 avoided) - Basic engineering ### **SP3 Structure & Objectives** #### **SP3 Objectives** □ The main objective of SP3 is to demonstrate the DMX TM process on pilot scale and study its application to coal power station and NGCC units with industrial pilot test on the Enel's coal fired power plant of Brindisi. #### SP3 Work Packages Description – WP3.1 WP 3.1: Definition of the Brindisi pilot plant revamping Participants: IFPEN, Enel, Laborelec/GDF SUEZ, Prosernat #### **Objectives** - **Define modifications** to be carried out on Enel Brindisi CO₂ capture pilot plant to test DMX - Design and Estimate the cost of the pilot revamping #### Task - 3.1.1 Experimentation of DMX on Enel minipilot at Brindisi lab facilities and at IFPEN research centre - 3.1.2 Experimentation at IFPEN on decantation rate on a representative cold mock-up - 3.1.3 Preliminary process study- full scale case - 3.1.4 FEED for Enel CO₂ capture pilot plant revamping - 3.1.5 Cost estimation of revamping #### Minipilot activities - Enel mini-pilot #### Brindisi pilot: **Sensitivity test:** to optimize the mini-pilot plant operating conditions **Long run test:** focused on the study of solvent's degradation / emissions in the optimized conditions. #### Flue gas condition | 14.12 | |-------| | 5.13 | | 25 | | 10 | | 130 | | | #### Brindisi pilot: Emissions measurements: participation of Laborelec via FTIR measurements (with calibration at IFPEN) ### Lab & Minipilot activities – IFPEN #### Target: - ✓ Demixing test to decanter design - √ Capture efficiency (lean and reach loadings) - √Solvent degradation - ✓ Emission - ✓ Corrosion #### **IFPEN Lab test** - ✓ VLE data + adapted thermodynamic model - Degradation / Corrosion and other operational issues - Kinetics & Mass transfer performances - L/L decantation effect of degradation #### Bottle-tests decantation Ultaturrax – 11,000 rpm | | dmax (mm) | |------------|-----------| | fresh case | 3.9 | | degraded | 2.5 | Semi-open batch reactor degradation tests T = 80°C, Patm PO2 = 200mbar PCO2 = 4.6mbar Vsolvent = 130 ml 1 week | | % amine loss ^a | [formiate]
ppm ^b | |-------|---------------------------|--------------------------------| | DMX-1 | 6% | 100 | | MEA | 58% | 19000 | | Ratio | 0.10 | 0.005 | a : GC analysisb : IC analysis © 2010 - IFP Energies nouvelles #### Lab & Minipilot activities – IFPEN #### Target: - ✓ Demixing test to decanter design - √ Capture efficiency (lean and reach loadings) - √Solvent degradation - ✓ Emission - ✓ Corrosion #### **IFPEN** mini-pilot - ➤ Mechanical/validation tests: T1 2013 - ➤ Operation on a 24/7 basis - ➤ Long run tests on MEA (reference case) : 1000 hrs - ➤ Long run tests on DMX : in progress - ➤ Operation on representative synthetic gas (SOx/NOx) #### Full scale application and costing Preliminary process study for application on a 660 MWe power plant, comparison between two cases: - **≻MEA 30%** (benchmarking) - > DMX - Assessment of the energy consumption : - Process scheme definition (steam turbine and capture process): - > Definition of the steam turbine scheme and optimization for the two cases - Simulation and evaluation of the impact on the thermal cycle for each capture process - CAPEX and OPEX estimation: - Definition of the method - Cost estimation with accuracy ± 30% - Final comparison based on : - > LCOE - Cost of CO2 avoided #### FEED study for Enel's pilot revamping - Pre-FEED in 2012 with strong interaction between **ENEL / IFPEN / PROSERNAT teams** - FEED: ENEL engineering + PROSERNAT with support of IFPEN - Kick-Off Meeting in Milan (28th May 2013) - basis of design - Heat and Mass Bances - PFD PID - piping classes - list of chemicals - Process Data Sheets of main/retrofitted equipments - Instrument list + controls - Plot plan - Operating manual - Cost estimation - HAZOP meeting (30th Sept. 2nd Oct. 2013) - Final documents for November ## **Outlook** - Octavius project - DMXTM process - SP3 : Demonstration of the DMX[™] process - Conclusions & future work ## Conclusions & perspectives #### Conclusions - HiCapt+: a G1 process (MEA 40wt.% + proprietary oxidation inhibitor + material recommendation) => PROSERNAT - DMX-1[™] : a promising G2 process under development for reducing energy penalty - long duration mini-pilot tests + FEED study for Enel's pilot retrofit under progress ## Future steps - Octavius EU project Go/NoGo milestone Dec. 2013 (technical – financial criteria – budget !) - tests of DMX-1 on Enel's Brindisi industrial pilot for further evaluation on full scale cases – tests in 2015-2016 - process ready for commercialization T1 2017 # Thank you! Ludovic.Raynal@ifpen.fr