Speciation of iron in MEA solutions: Solubility and Corrosion

Georgios Fytianos
Muhammad Awais
Hallvard F. Svendsen
Hanna K. Knuutila

Norwegian University of Science and Technology
Outline

• Introduction
• Motivation
• Methodology
• Results
• Conclusions
Introduction: Ideal Solvent

- Low degradation
- Low volatility
- Cheap
- High absorption rate
- High capacity
- Low corrosion rate
Introduction: Corrosion

- Corrosion is one of the main challenges in amine based PCCC
- The ideal solvent should have a minimum effect on corrosion
- Some iron compounds have a catalytic role in the degradation of solvents while others can increase the corrosion rate
- The target of this work is to examine an alternative, fast methodology for corrosion evaluation of solvents
Corrosion Evaluation: Overview

Weight loss technique with metal coupons is one of the most used for the calculation of the corrosion rate.

A number of electrochemical methods for corrosion measuring exist. Potentiodynamic polarization techniques are among the most popular.

SEM-EDS: Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy
Surface morphology- Elemental Mapping (homogeneous corrosion or not)

ICP-MS: Inductively Coupled Plasma Mass

Total Metal Concentration in the liquid gives information about the relative corrosivity
Background: Thermal degradation

- Stainless steel cylinders (316 SS) equipped with Swagelok® end caps

- 9 g of loaded solution of amine was injected into the cylinder
- Cell put in forced convection oven at 135 °C
- Experiments run for 5 weeks
- After thermal degradation experiments, we identify FeCO$_3$ on the steel surface with XRD
Background: ICP-MS

Comparison of Fe content after 5 weeks thermal degradation experiments at T=135°C
Motivation

• Tsuda et al. studied the effect of iron carbonate on the corrosivity of amine solutions in CO₂ removal units. They reported that corrosion was inhibited by the formation of FeCO₃ scale.

• They correlated high corrosion with high solubility of FeCO₃.

→ We will try to correlate the ferrous solubility with the solvent corrosivity.
Solubility of Fe(II) in amine solutions

• Could this be a fast methodology to determine corrosivity?

• Is there a correlation between Fe(II) and amine corrosivity?

• Based on literature DETA is more corrosive than MEA and that MEA is more corrosive than MDEA
Methodology

We measured the solubility of ferrous in 30wt% amine solution with 0.4 CO₂ loading

- FeSO₄ is added gradually
- Three temperatures were tested:
 - 25 °C, 40 °C and 60 °C
- Amines tested: MEA, MDEA, DETA
Spectrophotometric Determination of Fe$^{2+}$

Fe$^{2+}$ + 3phen \rightarrow (phen)$_3$Fe(II)

For quantitative analysis, the wavelength $\lambda_{\text{max}} = 508$nm is chosen.
Results

Fe(II) in 30wt% MEA

mg/L

hours

25C
40C
60C
Comparison of Fe\(^{2+}\) values (mg/L)

60 °C

<table>
<thead>
<tr>
<th>TIME</th>
<th>MDEA</th>
<th>MEA</th>
<th>DETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 h</td>
<td>59</td>
<td>64</td>
<td>91</td>
</tr>
<tr>
<td>24 h</td>
<td>16</td>
<td>92</td>
<td>136</td>
</tr>
<tr>
<td>48 h</td>
<td>6</td>
<td>34</td>
<td>175</td>
</tr>
</tbody>
</table>

45 °C

<table>
<thead>
<tr>
<th>TIME</th>
<th>MDEA</th>
<th>MEA</th>
<th>DETA</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 h</td>
<td>71</td>
<td>90</td>
<td>200</td>
</tr>
<tr>
<td>24 h</td>
<td>47</td>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>48 h</td>
<td>29</td>
<td>87</td>
<td>200</td>
</tr>
</tbody>
</table>
Conclusions

• The measured Fe(II) solubility in an amine solution was correlated with the corrosivity of the solvent

• Corrosivity: DETA>MEA>MDEA

• Our results are in good agreement with literature data from pilot and industrial plants

• Based on the current results, it seems the Fe(II) solubility could be used to predict corrosivity. However further tests will take place to confirm this correlation.
Acknowledgements

The work is done under the SOLVit SP4 project, performed under the strategic Norwegian research program CLIMIT. The authors acknowledge the partners in SOLVit, Aker Solutions, Gassnova, EnBW and the Research Council of Norway for their support.
Thank you for your attention