Simulation and validation of CO$_2$ mass transfer processes in aqueous MEA solutions with Aspen Plus at CO$_2$ Technology Centre Mongstad

E. S. Hamborg1,2, I. M. S. Larsen1,3, C. Desvignes1,3, T. de. Cazenove1, M. I. Shah1,5, N. Birgman1,6, T. Cents1,6, L. E. Øi3

1CO$_2$ Technology Centre Mongstad (TCM DA), 5954 Mongstad, Norway
2Statoil ASA, PO Box 8500, 4035 Stavanger, Norway
3Telemark University College, PO Box 203, 3901 Porsgrunn, Norway
4CPE Lyon, 43 Boulevard du 11 Novembre 1918, 69100 Villeurbanne, France
5Gassnova SF, Døkkvegen 10, 3920 Porsgrunn, Norway
6Sasol Technology, PO Box 5486, Johannesburg 2000, South Africa
Outline

• Introduction
 • CO₂ Technology Centre Mongstad

• Experimental
 • Amine plant absorber specifications
 • MEA campaigning (2013/2014 and 2015)
 • Aspen Plus modeling work at TCM

• Results and discussion
 • Overall simulation results
 • Temperature absorber profiles
 • CO₂ loading and enhancement factor absorber profiles
 • Driving forces and flux absorber profiles

• Concluding remarks

- catching our future
CO₂ Technology Centre Mongstad

• Located at the Mongstad industrial site
 • Oil refinery (flue gas with ~13% CO₂)
 • Gas fired power plant (flue gas with ~3.5% CO₂)

• Amine plant
 • Design & construction: Aker Solutions and Kværner
 • Campaigns: Aker Solution, Shell Cansolv

• Chilled ammonia plant
 • Design & construction: Alstom
 • Campaigns: Alstom

• TCM Owners: Gassnova (Norwegian state), Statoil, Shell, Sasol
• Purpose of TCM is to test, verify, and demonstrate CO₂ removal technologies
 • TCM does not develop CO₂ removal technologies

- catching our future
TCM Amine plant

- catching our future
TCM Amine plant – absorber

- Absorber results are well suited for simulator verification (e.g. Aspen Plus)
- Verifies (and tunes) mass transfer/kinetic and equilibrium correlations

- Absorber structure
 - 62 meter total height
 - 3.55m x 2m = 7.1m² cross sectional area
 - Koch Glitsch structured stainless steel packing
 - 3m + 3m = 6m water wash section
 - 12m + 6m + 6m = 24m absorption section
 - Collector trays and redistributors
 - Space available for (future) intercooler connections
 - 3m absorber sump
 - Demisters upstream and downstream water wash sections

- Instrumentation & sampling ports
 - 4 temperature sensors in radial plane at ~1m elevations
 - Solvent sampling stations at solvent inlet, outlet, and between sections
 - Differential pressure sensors over each section
 - Gas and liquid flow meters at inlet and outlet flows

- catching our future
MEA campaigns at TCM

- TCM conducted MEA campaigns;
 - Dec 2013 – Feb 2014 (in collaboration with Aker Solutions)
 - July 2015 – present (gas phase instrumentation heavily upgraded, results not considered here)

- MEA concentrations ranging 30 – 40 wt% on CO₂ free basis
 - Varying concentration causes different absorber temperature and mass transfer profiles \(\rightarrow\) ideal for simulator verifications

- Purpose of MEA campaigns;
 - Generate baseline results for comparison to commercial vendor technologies
 - Generate non-confidential results for easier and more straight-forward publishing, sharing, and knowledge build-up
 - Etc.
Aspen Plus modelling at TCM

- TCM is using commercial available Aspen Plus simulator
 - Version 7.0, 7.1, 7.3, and now upgrading to 8.6
 - Developed Excel tool for easier user interface with Aspen Plus v7.x
 - Adjustments to the physical solubility of CO₂ and refitted thermodynamic interaction parameters in v7.3 (collaboration with NTNU)
 - No further internal simulator development

- Simulator flow sheet resembles plant as much as possible
 - Heat exchanger coupled absorber/stripper, water wash sections, 2 stripper, and vapor compressors system, etc. implemented
 - Bravo et al. mass transfer/liq hold-up correlation, Chilton & Colburn heat transfer correlation, RadFrac/eNRTL mass transfer/thermodynamic model, etc.
 - Simulation procedure:
 - Input: gas inlet temp & flow, liq. inlet flow & \(a_{CO_2}\), MEA conc., capture rate, and packing height.
 - Model tuning by interfacial area factor \(\rightarrow\) here: 0.55
Absorber modelling and analysis

- **Reactive gas-liquid mass transfer processes simplified:**
 \[A_{gas} + B_{liq} \rightleftharpoons C_{liq} + D_{liq} \]

- **Assume:**
 - Mass transfer resistance at both gas and liquid side.
 - Reactive mass transfer (kinetics) can be described by the enhancement factor \(E \).
 - Physical gas solubility described by partition coefficient \(m \) and assumption of equilibrium at interface \(i \).

- **Well-known mass transfer relations:**
 - Liquid side mass transfer;
 \[J_A = k_L \cdot E \left(\frac{c_A^{liq}}{m} - c_A^{liq} \right) \]
 - Gas side mass transfer;
 \[J_A = k_G \cdot (c_A^{g} - c_A^{liq}) \]
 - Combining and rearranging yields;
 \[E = \frac{J_A m}{(c_A^{g} - mc_A^{liq} - \frac{J_A}{k_G})_b} \]

- **At each discretization stage, enhancement factor \(E \) and flux can be determined**
 - Provides the rate of absorption into a reactive solvent to the rate into a non-reactive/physical solvent.
Absorber modeling results

- Overall absorber modeling input & results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>30 wt% MEA</th>
<th>40 wt% MEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plant</td>
<td>Simulation</td>
</tr>
<tr>
<td>Flue gas flow rate</td>
<td>Sm³/hr</td>
<td>46.600</td>
<td>46.600</td>
</tr>
<tr>
<td>Flue gas CO₂ conc. (CHP)</td>
<td>[vol%]</td>
<td>3.57</td>
<td>3.57</td>
</tr>
<tr>
<td>Depleted flue gas CO₂ conc.</td>
<td>[vol%]</td>
<td>0.43</td>
<td>0.42</td>
</tr>
<tr>
<td>Capture rate</td>
<td>[%]</td>
<td>88.5</td>
<td>88.5</td>
</tr>
<tr>
<td>Solvent flow rate</td>
<td>kg/hr</td>
<td>55.000</td>
<td>55.500</td>
</tr>
<tr>
<td>Lean solvent loading</td>
<td>[-]</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Rich solvent loading</td>
<td>[-]</td>
<td>0.49</td>
<td>0.46</td>
</tr>
<tr>
<td>Packing height</td>
<td>m</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Anti-foam injected</td>
<td></td>
<td>no</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Results – temp profiles 30 and 40 wt%

- Good temperature predictions
- 40 wt% → higher temp as more CO₂ absorbs → exothermic rxn.
Results – $\alpha_{CO₂}$ and E profiles 30 and 40 wt%

- OK $\alpha_{CO₂}$ prediction \rightarrow mass transfer models may need further improvement
- Reactive chemical MEA absorbent provides highest “impact” on mass transfer at absorber top

- catching our future
Results – driv. forc., flux profiles 30 and 40 wt%

- Good driving forces throughout, highest flux and driving forces in middle of absorber
 - Top approaching equilibrium due to very low CO₂ gas content → importance of good gas phase instrumentation at absorber to avoid top pinching
 - Bottom approaching equilibrium due to increased P_{CO₂} VLE due to increase $\alpha_{CO₂}$
- Simulated (!) driving force pattern 40 wt% differs → should look similar from exp. $\alpha_{CO₂}$ profile

- catching our future
Concluding remarks

• Amine plant/absorber at TCM is suited for simulator verifications
 • Temperature and α_{CO_2} loading profiles are essential → preferably also CO$_2$ gas phase profiles

• A simulator is a good tool for understanding mass transfer when compared to experimental data
 • Highest flux occurs in the middle of the absorber column, pinching to be avoided
 • Further model development essential
 • Mass transfer correlations
 • Higher MEA concentration ranges
 • Simulator temperature profile match is not sufficient for complete description of the mass transfer process

• Further testing necessary
 • Increased CO$_2$ flue gas content → RCC gas with 13-15% CO$_2$
Thank you for your attention!!!

Questions???

Acknowledgments to TCM DA owners

- catching our future
New sample line

WP2a
WP2b
WP3

Current analyzers

Analyzer
Container (UIO)
PTR-TOF
(NH₃, aldehydes, amines)

New sample line

PTR-QMS 300
Amine
Analyzer House

Amine Absorber Outlet

Analyzer House

3 new sample lines

FTIR
CO₂, NH₃, Aldehyde, amine, etc

GC
CO₂, O₂, N₂, H₂O

IR
CO₂ (0-1 vol%)

IR
CO₂ (0-10 vol%)

IR
CO₂ (85-100 vol%)

O₂
CO₂ (Current)

O₂
Analyzer (0-25 vol%)

O₂
Current

CO₂
Current

CHP/RCC - inlet

GC
CO₂, O₂, N₂, H₂O

FTIR
CO₂, NOₓ, SDx, etc

O₂
CO₂ (0-25 vol%)

IR
CO₂ (0-5 vol%)

IR
CO₂ (0-15 vol%)

IR
CO₂ (0-1000 ppmv)

- catching our future