

Evaluating seal capacity of caprocks and intraformational barriers for CO ₂ containment
 If a capillary ("rock" seal) can support a column of hydrocarbon, then it should support a column of CO₂. (CO₂ column will be smaller than CH₄ column, but bigger than oil column)
 If the seal capacity is calculated as being insufficient to hold the required column, the cap rock may still be viable as low permeabilities may inhibit migration ("rate" seal)
\bullet If upward migration through the seal does occur, it would be at very slow rates (3 μm -30mm /1000 years) with low volume
 Break-through rates can take >0.3Ma/ 100m for migration via diffusion (e.g. Muderong Shale)
 142 256 - 5 26 26 - 5 26 26 - 5 26 26 - 5
LEAGHG CCS Summer School Beijing, China 13 – 17 August, 2012

<section-header><section-header><text><text><image>

Risk assessment of caprock & fault seal A fault bounded trap is confining if both the caprock and the fault are sealing. Ptrap = (Pcap * Pfault) Ptrap = (i*j*k) * {1-[(1-a)*(1-b)]}*(1-c)

