Environmental Impacts of Geologic CO$_2$ Storage

Presented by
Katherine Romanak,
The University of Texas at Austin

IEAGHG Summer School
Austin, Texas, USA
July 2014
Presentation Outline

• Overview of environmental impacts
• How science is addressing environmental concerns
• Examples of environmental impacts
 – Release from storage formation
 – Groundwater impacts
 – Ecosystem impacts
• Value of Information
• Communication
Definition of Environmental Impact

• Working Definition
 – Possible effect to the environment caused by the release of CO$_2$ and/or brine from a geologic CO$_2$ storage formation.

http://www.dailykos.com
Environmental Protection

- Begins in the project planning phase
 - Site characterization
 - Risk assessment
 - Permitting
 - Criteria for choice of sites
 - Project engineering and management with regard to potential migration pathways
 - CO₂
 - Brine

A Release Is Not Expected
Environmental Concerns

- CO$_2$ and/or brine migration
 - Drinking water impacts
 - CO$_2$ causing degradation of water quality
 - Brine contamination
 - Human and livestock health and safety
 - CO$_2$ displacing oxygen in low-lying areas
 - “catastrophic release”
 - Crops and overall ecosystem health
 - marine
 - terrestrial
Questions

• What circumstances will create an adverse impact?
• How likely is a release to occur?
• How likely is a release to reach the environments of concern?
• How can we predict the magnitude of an impact?
• How can we communicate impacts to the public?
Science Addressing Questions

- Controlled Releases/Injections
 - Deep Pilot Injection Projects
 - Shallow Controlled Releases
- Natural Analogs
- Industrial Analogs
- Laboratory Simulations
- Numerical Modeling
IEAGHG Environmental Research Network

Addressing knowledge gaps to predict impacts

1. Defining R&D Needs to Assess Environmental Impacts of Potential Leaks from CO$_2$ storage, Keyworth, Nottingham, UK, 2008

2. Natural Releases of CO$_2$: Building Knowledge for CO$_2$ Storage Environmental Impact Assessments, Maria Laach, Germany. 2010

4. Combined Meeting with Monitoring Network, 2013, Canberra Australia
Outcrop Analogs

Hydrothermal Systems as Analogs for Breached Traps and Subsurface Healing: Outcrop and Subsurface Examples and Escape Mechanisms

David Bowen, David Lageson, Lee Spangler (Montana State University)
Bryan Devault, Herbert Mosca (Vecta Oil and Gas)
David Eby (Eby Petrography)

Natural Releases of CO$_2$ Workshop
Maria Laach, Germany
November 2-4, 2010
Outcrop Analogs

Hydrothermal fluids introduced along a fracture zone – Madison Fm. Gallatin Canyon Montana
Migration Potential

- Correct environments trap CO₂
- Faults are most-likely avenues of transport out of traps.
- Faults can self heal
- Faults don’t always reach the surface

After Breach of Sandstone Aquifer Seal Hydrothermal Fluids spread out Below Secondary Top Seal Lose Energy and Heat and often, System Self-Heals

Potential Groundwater Impacts

CO₂
- pH decrease
- Mobilization of heavy metals
 - Mineral dissolution
 - Detachment of metals from grain surfaces

Brine
- Organics, injection impurities, total dissolved solids
Evaluating Metal Mobilization

Laboratory:
• Rapid trace metal mobilization followed by decline. (Lu et al., 2009)

Shallow Controlled Release (ZERT)
• Metals mobilized but were below drinking water standards and transient (Kharaka, 2010).

Natural Analogs (Mammoth Mt., Vesuvius)
• Metals not present in some high CO₂ environments. Some indication that metals are absorbed by mineral precipitation. (Stephens and Hering, 2004; Aiuppa et al., 1995)
Ecosystem Effects

Ecosystem effects of high CO₂ concentrations – the Laacher See as natural analogue

Martin Krüger, Dave Jones, Janin Frerichs, Julie West, Simone Gwosdz, Franz May, Ingo Möller

BGR & BGS
Ecosystem Effects

Laacher See: CO₂ vent at Site I

Changes in plant communities

Grasses
Polygonatum (acidophilic)

Distance (m)

% coverage

Bureau of Economic Geology
Ecosystem Effects Conclusions

- Areas with natural CO₂ seepage savely inhabited since hundreds of years
- These areas have a viable and productive agriculture
 - CO₂ seepage causes changes in biodiversity of plants and microbes (ecosystem type)
 - Change of soil chemistry might lead to change of soil value
- Effects of CO₂ leakage are spatially limited
- Change in plant and microbial communities to acid tolerant species (sometimes plant death at high CO₂ levels)
 - Generally, microbial cell numbers decrease with increasing CO₂
 - Positive effect of elevated CO₂ on selected microbial groups (Anaerobes)
- Altered geochemical environment (pH, O₂, mineralogy, nutrients)
- Substantial uptake of seeping CO₂ by plants and microbes
Value of Information

How can this knowledge be used to predict potential impacts?

• Scaling up from laboratory to basin
• Comparing system processes- (i.e CCS injection versus laboratory, controlled releases, analogs)
 – Subsurface conditions
 – Time scales
 – Mass flux
 – Flux rates
• Understanding variable impacts
Which Impact Will Occur?

Laacher See, Germany
No observable impacts

Mammoth Mt., USA
Tree damage

Both environments have high CO$_2$ flux. What's causing the different impacts?
How Analogous?

Volcanic terrain - high CO₂ analog

Sedimentary basin - common site for geologic CO₂ storage

Goff et al., 2001, Chemical Geology, High CO₂ Flux Measurements in Volcanic and Geothermal Areas, Methodologies and Results

McIntosh et al., 2004, Geological Society of America Bulletin
Understanding Knowledge Gaps

Shortcomings of Analogs

- Different system characteristics
- Time gap

Industry

~40 years

Natural Systems

100,000’s of years

1000-year storage requirement
The Importance of Communication

• Environmental impacts are a major public concern.
• Laymen gravitate toward using natural systems for understanding but commonly use them incorrectly.
• How can technical concepts be communicated?
Stakeholders and “Analogs”

Lake Nyos, Cameroon, August 1986
Release not an analog for geologic CO$_2$ storage
Concluding Remarks

- An environmental impact can be defined as the possible effect to the environment caused by the release of CO$_2$ and/or brine from a geologic CO$_2$ storage formation.
- The first step in environmental protection is choosing the correct storage site.
- Field tests, analog observations, laboratory experiments, and modeling give information useful for predicting environmental impacts.
- Scientists still need to understand how to apply current knowledge to predictions of environmental impacts.
- Environmental impacts are a major stakeholder concern and must be effectively communicated.
Contact Information

Katherine Romanak
Gulf Coast Carbon Center
Bureau of Economic Geology
The University of Texas at Austin

katherine.romanak@beg.utexas.edu

http://www.beg.utexas.edu/gccc

http://www.storeco2now.com