Rouzbeh Jafari, Ph.D.
Development Engineer – Shell Cansolv
IEAGHG International Interdisciplinary CCS Summer School 2016
University of Regina, Regina, Canada
Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers 2P and 2C definitions.

Organic: Our use of the term “Organic” includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Shales: Our use of the term ‘shales’ refers to tight, shale and coal bed methane oil and gas acreage.

DEFINITIONS & CAUTIONARY NOTE

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This presentation contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. All forward-looking statements contained in this presentation are expressly qualified by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2016 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, July 21, 2016. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
- Founded in 1997
- Extensive experience with regenerable amine processes
- Track record of delivering commercial scale flue gas treating amine plants worldwide
- 20+ licenses, 15 plants in operation worldwide
- Part of Shell since 2008
- Based in Montreal, Canada and Beijing, China
First commercial-scale post-combustion carbon capture system at a coal-fired power plant

Demonstrates the viability of large-scale post-combustion CO₂ capture

Uses Shell Cansolv CO₂ technology.
Captures up to 90% CO₂, high or low SO₂ content

Enables EOR with CO₂ from power plant flue gas

Meets stringent CO₂ regulations

CO₂ is permanently stored
WHY IS INDUSTRIAL CO2 CAPTURE ESSENTIAL?

- The 2DS suggests a steep deployment path for CCS technologies applied to power generation and a number of industries.

\[\text{Industry/ total} = \sim 45\% \]
EMISSION OF CO₂ FROM INDUSTRIAL PROCESSES

- On-site production of heat or electricity
- Chemical reactions that produce CO₂
INDUSTRIAL CO₂ SOURCES
WHAT ARE THE MAJOR CONTRIBUTORS?

- Steel
- Cement
- Chemicals
- Refineries
- Gas processing
- Pulp and Paper
- Bio-fuels
- Gasification
CO2 CAPTURE FROM INDUSTRIAL SOURCES
IRON AND STEEL PLANT
GLOBAL STEEL PRODUCTION

Global Crude Steel Production: 1980-2025

- By 2030 Production of steel will increase to 2.5 Gt/year,
- 65% of it will be in BRIC countries,

WHAT ARE THE SOURCES OF CO2 IN IRON AND STEEL PROCESS?

1.8 ton CO2/ton crude steel
Steel plant: 1.8 ton CO$_2$/ton crude steel

Estimate of cumulative steel production from now to 2030 = 30.5 Gt

Estimate of cumulative CO$_2$ emission from steel plant by 2030 = 55 Gt

Applying CCS on 15% of Steel production

8.3 Gt CO$_2$ Captured
This map is without prejudice to the status of any territory, to the delimitation of international boundaries and to the name of any territory, city or area.
CO2 CAPTURE FROM INDUSTRIAL SOURCES
CEMENT PLANT
By 2030 Production of cement will increase to 5.5 Gt/year,

India and China are the major producers.
WHAT ARE THE SOURCES OF CO₂ IN CEMENT PROCESS?

0.5 ton CO₂/ton clinker

Diagram showing the cement process with CO₂ emissions, calcining zone, clinkering zone, and fuel combustion. The calcining zone has the reaction CaCO₃ → CaO + CO₂ at 600-900°C.
CO2 CAPTURE FROM INDUSTRIAL SOURCES

CHEMICALS
numerous large-scale ammonia production plants worldwide, producing equivalent to 159 million tonnes of ammonia in 2010

China produced 32.1% of the worldwide production, followed by India with 8.9%,

80% or more of the ammonia produced is used for fertilizing agricultural crops.

Source: www.indexmundi.com/en/commodities/minerals/nitrogen/nitrogen_t12.html
WHAT ARE THE SOURCES OF CO2 IN AMMONIA PROCESS?

1.3 ton CO2/ton NH3

\[\text{CH}_4 + \text{H}_2\text{O} \rightarrow \text{CO} + 3\text{H}_2 \]

\[\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \]
CO2 CAPTURE FROM INDUSTRIAL SOURCES
REFINING
GLOBAL OIL REFINERY PRODUCTION

Products Made from a Barrel of Crude Oil

Typical Products Made from a 42-Gallon Barrel of Refined Crude Oil

- 3% Asphalt
- 4% Liquefied Petroleum
- 10% Jet Fuel
- 18% Other Products
- 23% Diesel Fuel & Heating Oil
- 47% Gasoline

WHAT ARE THE SOURCES OF CO$_2$ IN TYPICAL COMPLEX REFINERY?

<table>
<thead>
<tr>
<th>CO$_2$ emitter</th>
<th>Description</th>
<th>% of total refinery emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Furnaces and boilers</td>
<td>Producing heat and steam</td>
<td>30–60%</td>
</tr>
<tr>
<td>Utilities</td>
<td>Electricity and steam</td>
<td>20–50%</td>
</tr>
<tr>
<td>Fluid catalytic cracker</td>
<td>CO$_2$ as by-product</td>
<td>20–35%</td>
</tr>
<tr>
<td>Hydrogen manufacturing</td>
<td>CO$_2$ as by-product</td>
<td>5–20%</td>
</tr>
</tbody>
</table>

CO\textsubscript{2} Capture from Industrial Sources

Challenges of Deploying CO\textsubscript{2} Capture Process
CHALLENGES ➔ HIGHER COST FOR CCS

Characterization of inlet gas to capture process

<table>
<thead>
<tr>
<th></th>
<th>Steel and Iron</th>
<th>Cement</th>
<th>Chemicals (Ammonia plant)</th>
<th>Refinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂ Concentration (% vol.)</td>
<td>20-30</td>
<td>20-40</td>
<td>~8</td>
<td>5-15</td>
</tr>
<tr>
<td>Temperature (°C)</td>
<td>~150</td>
<td>100-150</td>
<td>200-250</td>
<td>200-300</td>
</tr>
<tr>
<td>Pressure (Mpa)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Contaminations</td>
<td>dust</td>
<td>dust</td>
<td>---</td>
<td>SO₃, NO₂, dust</td>
</tr>
</tbody>
</table>

Size and location

<table>
<thead>
<tr>
<th></th>
<th>Steel and Iron</th>
<th>Cement</th>
<th>Chemicals (Ammonia plant)</th>
<th>Refinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed or concentrated</td>
<td>Distributed</td>
<td>Distributed</td>
<td>Distributed</td>
<td>Concentrated</td>
</tr>
<tr>
<td>Plant capacity</td>
<td>< 1Mton CO₂/year</td>
<td>< 1Mton CO₂/year</td>
<td>< 1Mton CO₂/year</td>
<td>> 1Mton CO₂/year</td>
</tr>
</tbody>
</table>

Other items

<table>
<thead>
<tr>
<th></th>
<th>Steel and Iron</th>
<th>Cement</th>
<th>Chemicals (Ammonia plant)</th>
<th>Refinery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low grade heat available on site</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Availability of the water</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

IS CCS THE ONLY OPTION?

- Alternative materials with lower carbon foot options,
 - Material of construction,
 - Chemicals,
- Process improvement:
 - Efficient energy consumption
 - Different chemistry and reaction pathway to eliminate CO₂ as a byproduct
- Onsite CO₂ utilization
 - Example: Cement curing at cement plant
- Alternative solutions will reduce CO₂ emission but cannot replace CCS,
SUMMARY
Capture

- Capture-related technology has been utilised in industry for decades

- Most mature technology uses amine solvents for CO₂ Capture

- Emerging capture technologies build on industrial processes e.g. gas/solid fluidised beds & membranes.

- CCS will play major role for CO₂ emission reduction from industrial sources
CCS PROJECTS ARE OPERATIONAL BUT MORE ARE NEEDED

15 large scale projects in operation globally, a further 7 under construction

Most projects are associated with O&G industry and using CO₂ for EOR

Capacity to prevent 40 million tons of CO₂ per annum from reaching the atmosphere

Source: Global CCS Institute, 2016
SHELL CCS APP.

CONTENTS

HOME

WHAT IS THE ENERGY CHALLENGE?

WHERE IS CCS HAPPENING?

HOW DOES CCS WORK?

HOW IS CCS PART OF THE SOLUTION?

WHAT'S NEW

WHAT ARE THE NEXT STEPS?

BACK TO TOP
Q & A