Models for Wellbore Leakage

Michael A. Celia
Princeton University

Jan Nordbotten (*U. Bergen and Princeton U.*)
Stefan Bachu (*Alberta Research Council*)
Mark Dobossy (*Princeton U.*)
Outline

• Challenges of the Well Leakage Problem
• Our Modeling Approach
• Numerical, Analytical, and Semi-analytical Models
• Concluding Comments
Worldwide Density of Oil and Gas Wells

Number of Wells Drilled per ~10,000 km²

1 - 100 100 - 300 300 - 1,000 1,000 - 4,400 4,400 - 23,400 23,400 - 61,000 No Wells/Data

End of 2004

From IPCC SRCCS, 2005
Injection and Leakage

• How to model this system?
• Domain Size: 1,000 km²
• Leakage Pathways: 0.001 m².
• Flow Properties along well highly uncertain.
• Possible Material Degradation.

(From Duguid, 2006)
Our Approach to Modeling

• Simplify the system (but not too simple)
 – Macroscopic sharp interface (buoyant segregation)
 – Vertical equilibrium / Structured vertical velocity
 – Focus on early time \rightarrow Max risk of leakage
 • Two-phase flow physics dominates
 • Ignore geochemistry, non-isothermal effects

• Develop very fast analytical, semi-analytical, and hybrid numerical-analytical solutions.

• Apply simulation tools in a Monte Carlo framework.

• Combine models into 'hierarchical' framework

Numerical Solutions

Solve for $p(x,y,t)$, $h(x,y,t)$
Analytical Solution

\[
\frac{dh'}{d\chi} = 4\Gamma \frac{\gamma_1}{\chi} \frac{d}{d\chi} \left((1-h') \chi \frac{dp'}{d\chi} \right)
\]

\[- \frac{di'}{d\chi} = 4 \gamma_2 \Gamma \lambda_1 \frac{d}{d\chi} \left(i' \chi \frac{d}{d\chi} (p' + h' + \vartheta i') \right) \]

\[- \frac{d}{d\chi} (h'-i') = 4\Gamma \frac{\lambda_2}{\chi} \frac{d}{d\chi} \left((h'-i') \chi \frac{d}{d\chi} (p' + h') \right) + 4(1-\gamma_2) \Gamma \lambda_1 \frac{d}{d\chi} \left(i' \chi \frac{d}{d\chi} (p' + h' + \vartheta i') \right) + 4\Gamma(1-\gamma_1) \frac{d}{d\chi} \left((1-h') \chi \frac{dp'}{d\chi} \right) \]

\[\chi \equiv \frac{r^2}{\tau} \]

(From Nordbotten and Celia, *JFM*, 2006; See Celia and Nordbotten, 2009)
Similarity Solution: Simplified

When $\Gamma < 0.5$

$$h'(x) = \frac{h(x)}{H} = \frac{1}{\lambda - 1} \left(\sqrt{\frac{2 \lambda}{x}} - 1 \right)$$

$\chi_{\text{max}} = 2 \lambda$

$\chi_{\text{min}} = 2 \frac{1}{\lambda}$

(From Nordbotten and Celia, *JFM*, 2006)
A Semi-analytical Model

1. Injection Plume, Secondary Plumes and Pressure Fields: Similarity Solution *(Nordbotten and Celia, JFM, 2006)*

2. Leakage Dynamics: Multi-phase Darcy Flow along Leaky Well Segments *(Nordbotten et al., ES&T, 2005, 2008)*

3. Upconing around Leaky Wells *(Nordbotten and Celia, WRR, 2006)*

4. Grid-free solutions: We can now solve 50 years of injection over 2,500 km², 12 layers, and 1,200 wells in about 15 minutes.

\[Q_{\text{well}} \propto K_{\text{well}} k(S_\alpha) \left(\frac{P_1 - P_2}{H} - \rho_\alpha g \right) \]
Study Area around Edmonton – Wabamun Lake
Model Results

Basal sandstone

Nordegg

Nisku
Recent Developments

• High-performance Implementation (Elsa)
 – Complete re-implementation of code in C++
 – Highly modular, very efficient

• Expanded Physics in Semi-analytical Model
 – Diffuse leakage of brine through caprock formations
 – Improved similarity solutions for low flow rates

• User-friendly Interfaces
 – Web-based interface for simple systems
 – Multiple formats for input

• Separate numerical sharp-interface code (VESA)

• Designs for a hierarchical modeling platform.
Concluding Remarks

- Simplified models can be reasonable because:
 - Buoyancy provides strong vertical segregation
 - Space- and time-scale separation for critical processes
 - Large uncertainties in critical leakage parameters make detailed fine-scale simulation unnecessary

- Fully coupled detailed models are appropriate for:
 - Fine resolution along critical leakage pathways
 - Computational upscaling for bulk parameters
 - Basic Science investigations

- Important practical questions require practical models.
Thank You!
Publications

Critical Parameters

- Reservoir Formations (Upscaled):
 - Permeability (k), Porosity (ϕ), and Thickness (H)
 - Residual Saturations (S_{res})
 - Endpoint Relative Permeability (k_{rel})

- Caprock Formations:
 - Permeability
 - Thickness
 - Preferential Flow Paths

- Old Wells (and Faults):
 - Depth
 - Effective Permeability (k_{well})
 - Geochemical reactions, other local nonlinear processes