Carbonation-Calcination Reaction (CCR) Process for High Temperature \(\text{CO}_2 \) and Sulfur Removal

Shwetha Ramkumar, William Wang, Dr. Songgeng Li, Siddharth Gumuluru, Zhenchao Sun, Nihar Phalak, Danny Wong, Mahesh Iyer

Dr. Robert M. Statnick, Dr. L.-S. Fan

William G. Lowrie Department of Chemical and Biomolecular Engineering
The Ohio State University
Columbus, Ohio, USA

Bartev Sakadjian
Babcock and Wilcox Power Generation Group

1st Meeting of the High Temperature Solid Looping Cycles Network
September 15th –September 17th
CO₂ Capture from Fossil Fuel Based Plants

Post Combustion
- Coal or Natural Gas
- Boiler → Steam Generator → CO₂ Capture

Oxy Combustion
- Coal or Natural Gas
- Air
- ASU
- Boiler → Steam Generator
- Gasifier
- Gas Cleanup → WGSR → CO₂ capture → Reforming → PSA → FT Reactor
- Electricity
- Electricity CO₂ free Flue Gas → CO₂ Compression, Transportation and Sequestration

Pre Combustion
- Coal or Natural Gas
- Electricity
- N₂ and Steam
- Gas Turbine → Steam Turbine → Hydrogen
 - Ammonia Synthesis
 - Hydrogenation
 - Other chemicals synthesis
- Liquid Fuels
General Overview

- Coal-fired power plants generate 50% of electricity in United States and accounts for 33% of United States CO$_2$ emissions

- Generate 41% of world’s electricity and accounts for 42% of world’s CO$_2$ emissions

- Necessary to develop economic, post-combustion CO$_2$ removal technology for existing power plants to sustain energy demand while protecting environment
 - Solvent based scrubbing
 - oxyfuel
 - adsorbents
 - Membranes
 - reactive sorbents
Use of metal oxide (CaO) in a reaction-based cyclical capture cycle

- **Carbonation:** \(\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \)
- **Sulfation:** \(\text{CaO} + \text{SO}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{CaSO}_4 \)
- **Calcination:** \(\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \)

Advantages of Carbonation/Calcination Reaction (CCR)

- Operation under flue gas conditions
- High equilibrium capacities of sorbent
- Calcination produces pure \(\text{CO}_2 \) stream
- Low sorbent cost
- Simultaneous \(\text{CO}_2/\text{SO}_2 \) removal
- High-temperature operation allows for heat utilization
Demonstration Project Team

<table>
<thead>
<tr>
<th>Organization</th>
<th>Roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio State University</td>
<td>Project Lead, Testing, Data Analysis</td>
</tr>
<tr>
<td>Clear Skies Consulting</td>
<td>Project Manager</td>
</tr>
<tr>
<td>AEP</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Babcock & Wilcox</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Carmeuse</td>
<td>Collaborator</td>
</tr>
<tr>
<td>CONSOL Energy</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Duke Energy</td>
<td>Collaborator</td>
</tr>
<tr>
<td>First Energy</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Littleford Day</td>
<td>Collaborator</td>
</tr>
<tr>
<td>Shell Global Solutions</td>
<td>Collaborator</td>
</tr>
</tbody>
</table>
Basic Reactions

Based on high-temperature, reversible reaction of metal oxide (CaO)

CARBONATOR
- Dehydration: \(\text{Ca(OH)}_2 \rightarrow \text{CaO} + \text{H}_2\text{O} \)
- Carbonation: \(\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \)
- Sulfation: \(\text{CaO} + \text{SO}_2 + \frac{1}{2} \text{O}_2 \rightarrow \text{CaSO}_4 \)

 450°C – 650°C

CALCINER
- Calcination: \(\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2 \)

 900°C – 1200°C

HYDRATOR
- \(\text{CaO} + \text{H}_2\text{O} \rightarrow \text{Ca(OH)}_2 \)

 500°C, P ~ 1 atm

Energy flows through the system, with CO2 to sequestration and waste CaO/CaCO3/CaSO4 being recycled.

© The Ohio State University. All rights reserved.
Single cycle (once-through) testing

- Multiple sorbents
- Solids loading (Ca:C ratio)
- Residence time
- Reaction Temperature
Sub-pilot Plant Set-up

- Sorbent Injection
- Gas sampling system
- Coal Stoker
- Baghouse
- Clean Flue Gas To Atmosphere
CO₂ Removal by Ca Based Sorbents

% CO₂ Removal

Ca:C Mol Ratio

- Calcium Hydroxide
- Pulverized Ground Lime
- Ground Lime

© The Ohio State University. All rights reserved. U.S. Patent Application No. 61/116,172
SO$_2$ Removal by Ca-based Sorbents

![Graph showing SO$_2$ removal efficiency for different Ca:C mol ratios with data points for Calcium Hydroxide, Pulverized Ground Lime, and Ground Lime.]
Effect of Residence Time

CO₂ Removal vs. Reaction Residence Time

© The Ohio State University. All rights reserved.
Multicyclic Testing
Calcination under Realistic Conditions

- Sorbent reactivity reduced to half during calcination
- Effect of sintering reduced by steam calcination
- Increase in steam concentration improves reactivity

- Calcination at 900°C with 50% steam and 50% CO₂
- Reduced sintering over multiple cycles
- Reactivity reduced to half in 4 cycles
CCR with hydration

- Sorbent reactivity reduced to a third after calcination at 1000°C
- Calcined sorbent regenerated completely by hydration
Cyclic Studies Set-up

- Coal Stoker
- Rotary Calciner
- Sorbent Injection
- Baghouse

© The Ohio State University. All rights reserved.
Multicyclic CO$_2$ and SO$_2$ Removal
Aspen Simulation Assumptions

- 500 MWe power plant
- Coal Composition: Pittsburgh #8
- 20% Excess Air
- 41% Turbine Efficiency
- 10% in-house electricity consumption
- 119 kWh/tonne CO₂ for compression to 14 MPa (~140 atm)

Parasitic Energy Consumption =
\[
\frac{\text{(Net Electricity Generation w/o CO₂ Control)} - \text{(Net Electricity Generation w/CO₂ Control)}}{\text{Net Electricity Generation w/o CO₂ Control}} \times 100
\]

1. Wong, S. "CO₂ Compression and Transportation to Storage Reservoir”. Asia-Pacific Economic Cooperation. Building Capacity for CO₂ Capture and Storage in the APEC Region. Module 4
Aspen Simulation of CCR Process

Pittsburgh #8 Coal, 1506.84 MWh input
1.33:1 Ca/C mol ratio
90% CO2/100% SO2 removal
3% purge stream
698.7 MWh from Boiler
647.6 MWh from CCR
90% Heat Extraction
582.8 MWh
41% Turbine efficiency
525.4 MW Gross
10% in-house consumption
472.8 MWs
51.3 MWs compression (119 kWh/tonne CO2)
421.5 MWs NET
Parasitic Energy Consumption = 15.8%

Temperature (°C)
Pressure (atm)
Mass Flow Rate (tons/hr)
Duty (MW)
Q Duty (MW)

CO2/SO2 Lean Flue Gas to Stack

ASH PCD

CO2/SO2 REMOVAL

PURGE/RECYCLE

CALCINER

15% - 20% Parasitic Energy Consumption (with compression)
Overall Electricity Production Efficiency

Net Efficiency, HHV (%)

- Air Fired SC/Air* Base
- Air Fired USC/Air*
- Econoamine SC/Air*
- Oxy Fuel SC/ASU*
- CCR SC/Air

*Ciferno et al. 2008

Sakadjian et al, 2009

© The Ohio State University. All rights reserved.
Conclusions

- Greater than 90% CO₂ and ~100% SO₂ Removal at a C:C of 1.3
- Ca(OH)$_2$ has highest reactivity leading to low Ca:C and residence time
- 13 hours of continuous operation conducted and repeatable results obtained
- Sorbent reactivity maintained constant over multiple cycles
- Reduction in sorbent circulation and make up rate
- Low parasitic energy requirement of 15% -20% for CCR depending on heat integration
- Competitive with existing CO₂ control technologies