Frio II Brine Pilot: Preliminary results of combined well-based geophysical and geochemical monitoring methods

Barry Freifeld and Tom Daley
Lawrence Berkeley National Laboratory

Yousif Kharaka
United States Geological Survey

October 31, 2006
IEA GHG 3rd Meeting of the Monitoring Network
Acknowledgments

• Lots of people helped to make this work possible

• Bureau of Economic Geology, Jackson School, The University of Texas at Austin: Susan Hovorka, Jeff Kane, Andrew Tachovsky, Abhijit Mukarjee, Tip Meckel;
• Lawrence Berkeley National Lab, (Geo-Seq): Larry Myer, Rob Trautz, Christine Doughty, Sally Benson Paul Cook, Duo Wang, Ray Solbau
• Schlumberger: John Tombari, T. S. Ramakrishna,
• Oak Ridge National Lab: Dave Cole, Tommy Phelps, Phil Szymcek
• Sandia Technologies: David Freeman, Kirk De long, Dan Collins,
• USGS: Evangelos Kakauros, Jim Thordsen, Gill Amsen
• Praxair: Glen Thompson
• Australian CO2CRC (CSIRO): Jim Underschultz,
• Core Labs: Paul Martin and others
• MIT Jonathan Ajo-Franklin

• U.S. DOE/NETL provided the funds to make it possible
Combined Well-based Geophysical/Geochemical Monitoring

Frio II utilized

— Seismic source in injection borehole
— Hydrophones in observation borehole
— In each perforated interval
 • U-tube sampler
 • Pressure/Temperature sensor
Frio II Seismic Monitoring (As Installed Sep. 2006)
Source: 1657 m (5437 ft) Sensors 1630-1680 m (5349-5512 ft) with 6 m gap
Frio II Seismic Monitoring (As Installed Sep. 2006)
Source: 1657 m (5437 ft) Sensors 1630-1680 m (5349-5512 ft) with 6 m gap
Injection Well Equipment

- Packer
- Seismic Source
- CO2 Injection tubing
Collocated U-Tube and Seismic Source

The ‘U’

Check Valve

Top of Seismic Source
Installation of U-tube and Seismic Source on 2 3/8” tubing

Rolls of tubing for U-tube

Seismic Source
Seismic Sensor (Hydrophone) Inside Protective Clamp

Hydrophone
Pre Injection Monitoring Channel 14 One recording every 2.5 minutes

Clock Time (1 Hour total)

Note: Expected Change due to CO2 ~ 1.5 ms
Channel 1 (Bottom) PreInjection

Clock Time (1 Hour total)

Note: Expected Change due to CO2 ~ 1.5 ms
Channel 1 (Bottom) PrelInjection Color Amplitude Display

Clock Time (1 Hour total)

Note: Expected Change due to CO2 ~ 1.5 ms
Channel 1 (Bottom)

Clock Time (10 Hours total)
9 Channels 25 Hours
9 Channels 45 Hours

Below Packer

Above Packer
All Channels - 60 Hours
Channel 14 (Top of Sand) 45 Hours
Sensor 1650 m (5413’) Top Sand

FFID	1	5	9	13	17	21	25	29	33	37	41	45	49	53	57	61	65	
Time (hrs)																		
10.5	11	11.5	12	12.5	13	13.5	14	14.5	15	15.5	16	16.5	17	17.5	18	18.5	19	19.5

Pump Shutdown

Breakthrough

Chan 16 1650 m
Geochemical Sampling Requirements for Frio I & II Pilot Study

- Minimal perturbation to flow field
- Sample recovery of sufficient volume to introduce fresh fluid to wellbore
- Multiphase constituents preserved and representative of downhole conditions
 - Brine/supercritical CO$_2$
 - No degassing
- Quantify brine/CO$_2$ ratio
- High frequency (hourly?) for assessment of CO$_2$/tracer arrival at observation well
Sampling Technologies Considered and Rejected

- **Downhole wireline sampling** (used for baseline/postinjection monitoring)
 - Expensive
 - Small sample size (other method needed to introduce fresh fluid to wellbore)
 - Difficult/risky to perform as 24/7 operation
- **Gas lift**
 - Hard to control lift rate
 - Perturbation to flow field
 - Difficult to recover downhole conditions
- **Submersible pump**
 - Not applicable to multiphase fluids
 - Interference with seismic
 - Perturbation to flow field
New Sampling Methodology based on old technology—U-Tube Sampling

- Large volume samples - 52 liters
- No degassing
- High purity – no contamination from air
- Collection of multiphase fluids
- High frequency ~70 minute cycle time
New Sampling Methodology based on old technology—U-Tube Sampling

Sample Leg
Drive Leg
Ball Check Valve
Production Tubing
Sliding End Packer
Inlet Filter: 40µm sintered stainless steel

Vent Manifold
High Pressure
Atmospheric

High-Pressure N₂
Supply Manifold

N₂ Purge Manifold
Sample Port
Sample Leg
Sample Manifold
13 L Vessels

Observation Well

U-Tube (see Figure 1 for detail)
Sample Interval

Compressor

Pressure Regulator
Pressure Transducer
Strain Gauge
Valve
Frio II Geochemical Sampling

- On-line high pressure pH, EC
- Liquid samples for
 - Aqueous chemistry (USGS)
 - PFT/Difluoro- Dibromo-methane tracers (ORNL/UT)
 - Fluorescein tracer (LBNL)
- Gas samples for
 - CD$_4$ Tracers (CO2CRC)
 - Quadrupole Mass Spectrometer Analysis
 - CO$_2$/CH$_4$
 - Kr/Xe/SF$_6$ Tracers (LBNL)
Gas Analysis—Quadrupole Mass Spectrometer

- Pressure Regulator
- Pressure Transducer
- Strain Gauge
- Valve

Diagram of gas analysis setup with labels for sampler pressure, vent, peristaltic pump, gas/liquid separator, and quadrupole mass spectrometer.
Mass Spectrometer Data

Quadrupole Gas Analysis

- Air
- Frio Gas

- Methane
- Nitrogen
- Oxygen
- Argon
- Carbon Dioxide

Normalized Detector Ion Current vs. AMU
Results from Frio II

[Graph showing gas concentrations over time]

- CO2
- CH4
- O2
High Pressure/Bench pH Measurements

Frio II - Observation Well - U-tube

- bench pH
- in-line pH

preliminary
Frio II Alkalinity

Elapsed Time (hours)

Alkalinity (mg/L)
Determination of Sample Fluid Density

Strain Gages

Sliding Sleeves
Frio I Sample Density

Fluid Density (kg/m3)

Brine Density = 1068 kg/m3
Frio II Sample Fluid Density

Density (kg/m³)

Sample Pressure (PSI)

9/28/2006 0:00 9/28/2006 12:00 9/29/2006 0:00 9/29/2006 12:00 9/30/2006 0:00
Tracer Testing

Tommy Phelps, Phil Szymcik – ORNL
High pressure piston pumps for Perfluorocarbon Tracers

Jim Underschultz – CSIRO Petroleum
collects isotubes for CD$_4$ analysis
Frio II Results—Evidence of Rapid CO₂ Dissolution

- Kr
- SF₆
- Xe

[Graph showing PPM levels from 09/25/06 to 10/01/06]
Frio II Results-Evidence of Rapid CO$_2$ Dissolution

Krypton injected 16 hours after start of CO2 injection!
What does the future hold for well-based methods?

- Multiple completions in each borehole
- Multifunction completions
 - Electrical
 - Seismic
 - Hydrologic/Geochemical sampling
 - ???
- Fiber-optic based sensors
 - Distributed Temperature Sensors
 - Down-hole geochemical measurements
 - Advective flux measurement
- Vigilence required to incorporate technologies from other fields as they develop
Example of technology not yet applied to monitoring CO₂—DTPS

- Application—monitoring of conditions at Yucca Mountain Nevada, USA for High-Level Radioactive Waste storage
- Completion consists of:
 - 4 U-tube samplers
 - Distributed Thermal Perturbation Sensor (DTPS)
- Similarity to M&V CO₂ sequestration
 - Regulatory driven activity aimed at waste isolation
 - Long-duration monitoring (~100 yrs)
 - Economic drivers—high well cost ⇒ sparse data
Therefore need to maximize data from a single wellbore
Distributed Thermal Perturbation Sensor

Fiber-Optic DTS

Constant Wattage Heater

Temperature
Installation of DTPS with 4 U-tubes
Getting U-tube Ready for Deployment
Low Tech Installation
DTPS Heating Data

Depth (mbgs)

Temp (°C)
Data Converted into Advective Flux

![Graph showing changes in temperature and flux with depth.](image-url)
Frio II Lessons Learned

- Integration between monitoring technologies is key to success
- Time-lapse seismic cross-hole worked!!!
- Sample fluid location has a large impact on what is measured
 - Borehole fluid≠formation fluid
 - Two U-tubes (shallow and deep) should be located to collect samples biased towards gas and liquid
- Do not limit yourselves to “accepted” modalities and methodologies for M&V
- **Engineer** for simplicity and robustness- Future U-tube deployments will be simpler.
Lessons learned continued

• For pilot scale (scientific) testing all critical processes/parameters need to have a clearly designated technical lead
• Expect the unexpected
 — Early breakthrough
 — No breakthrough
 — All points in between