Demonstration of an Oxyfuel Combustion System

2nd Oxyfuel Young Researchers’ Forum
Bergabo Conference Centre, Sweden

Graham Lewis, David Sturgeon
Doosan Babcock Research and Development Centre
19 September 2008
Contents

• Oxyfuel Combustion
• Three Stage Development Programme
• OxyCoal-UK Phase 1
 – Combustion Fundamentals
 – Furnace Design and Operation
 – Flue Gas Clean-Up
 – Generic Process Issues
• OxyCoal-UK Phase 2
 – Development of a purpose designed oxyfuel demonstration facility
 – Oxyfuel burner design and manufacture
 – Demonstration of an oxyfuel combustion system
Oxyfuel Technology

Oxyfuel combustion is technically viable and economically competitive with alternative technologies.

Air Firing:
Coal + O₂ + 4N₂

Oxy Firing:
Coal + O₂ + xCO₂

Oxy Firing:
ASU

N₂

Air Firing:
CO₂ + 4N₂

Oxy Firing:
CO₂

Air Firing:
Flue

Oxy Firing:
Inerts Removal and CO₂ Compression

Oxy Firing:
CO₂ Recycle
Three Stage Development Programme

To develop a competitive oxyfuel firing technology suitable for full plant application post-2010.

- A phased approach to the development and demonstration of oxyfuel technology.

Phase 1:
- Fundamentals and Underpinning Technologies (OxyCoal-UK Phase 1, 2007 - 2008)

Phase 2:
- Demonstration of an Oxyfuel Combustion System (OxyCoal-UK Phase 2, 2007 - 2009)

Phase 3:
- Reference Designs (2009 - 2010)
OxyCoal-UK: Phase 1 – Project Participants

€2.8 million collaborative project under the BERR Technology Programme.

• Lead company

 Doosan Babcock Energy

• Industrial Participants

 Air Products e.on RWE bp

• University Participants

 Imperial College London The University of Nottingham

• Sponsors / Sponsor Participants

 Scottish and Southern Energy ScottishPower energy wholesale EDF Energy Drax Power Limited DONG Energy

• UK Government Support

 BERR Department for Business Enterprise & Regulatory Reform EPSRC Engineering and Physical Sciences Research Council
Characterisation of coal ignition, devolatilisation, char burnout and nitrogen partitioning behaviour under oxyfuel firing conditions.

- **Explosion Bomb Characterisation**
 - Coal ignition

- **Drop Tube Furnace (DTF)**
 - Devolatilisation
 - Char burnout
 - Char intrinsic reactivity
 - Nitrogen partitioning

- **Computational Fluid Dynamics (CFD)**
 - Oxyfuel firing conditions

Drop-Tube Furnace 2D Temperature Contour CFD model

Drop-Tube Furnace (photograph courtesy of University of Nottingham)
Investigation of the performance of the oxyfuel process and its key impacts on utility plant operation and performance.

- Pilot-scale testing on E.ON UK 1 MW₁ Combustion Test Facility (CTF)
 - Behaviour of two coals
 - c. 150 hours oxyfuel combustion operating experience

- Computer Controlled Scanning Electron Microscope (CCSEM)
 - Characterisation of 1MW₁ test deposit samples

- Laboratory-scale corrosion testing

E.ON UK 1 MW₁ Combustion Test Facility (CTF) (photograph courtesy of E.ON UK plc)
OxyCoal-UK: Phase 1 – Flue Gas Clean-Up

Development and testing of novel flue gas clean-up system for NO$_x$ and SO$_2$ removal and CO$_2$ purification.

- Theoretical modelling

- Lab-scale testing
 - Simulated flue gas

- Pilot-scale testing
 - Oxyfuel conversion of 160 kW$_t$ NO$_x$ Reduction Test Facility (NRTF)
 - Parametric testing of oxyfuel process
 (c. 70 hours operating experience)
 - Provision of flue gas to gas clean-up test rig

160 kW$_t$ NO$_x$ Reduction Test Facility (NRTF)
Pilot-scale testing of primary and secondary NO\textsubscript{x} reduction technologies and clean coal technologies on the 160 kW\textsubscript{t} NO\textsubscript{x} Reduction Test Facility (NRTF).
OxyCoal-UK: Phase 1 – Flue Gas Clean-Up

20 days pilot-scale flue gas clean-up testing firing El Cerrejon coal on the 160 kW$_t$ NO$_x$ Reduction Test Facility (NRTF).

- Oxyfuel firing vs. Air firing

- Investigate effect of:
 - Burner stoichiometry
 - Flue gas recycle ratio
 - Transport CO$_2$ oxygen content
 - Selective catalytic reduction (SCR)

- Parameters measured:
 - Process conditions
 - Flue gas analyses (NO, O$_2$, CO, SO$_2$, CO$_2$, SO$_3$ and Hg)
 - Carbon in ash
 - Hg in ash
High flue gas CO₂ concentration for oxyfuel combustion (c. 80%v/v dry)
OxyCoal-UK: Phase 1 – Flue Gas Clean-Up

Reduced flue gas NO concentration for oxyfuel combustion by c. 50% on a heat input basis (mg/MJ).

![Graph showing burner stoichiometry and furnace exit NO emissions](image)
Reduced flue gas SO_2 concentration for oxyfuel combustion by c. 25% on a heat input basis (mg/MJ).
OxyCoal-UK: Phase 1 – Generic Process Issues

A desk-top study to investigate the key process issues associated with an oxyfuel installation on a large utility plant.

- Oxyfuel power plant
 - Safety assessment
 - Reliability, availability, maintainability and operability assessment

- Front End Engineering Design (FEED) Study for oxyfuel conversion of 90 MW\textsubscript{t} Multi-fuel Burner Test Facility (MBTF)
OxyCoal-UK: Phase 2 – Project Participants

€9.3 million collaborative project under the BERR Hydrogen Fuel Cells and Carbon Abatement Technologies (HFCCAT) Demonstration Programme.

• Lead Company

Doosan Babcock Energy

• University Participants

Imperial College London
The University of Nottingham

• Prime Sponsor

Scottish and Southern Energy

• Sponsors

Air Products, E.ON, ScottishPower Energy (energy wholesale), EDF Energy, Drax, DONG Energy

• UK Government Support

BERR | Department for Business Enterprise & Regulatory Reform
OxyCoal-UK: Phase 2 – Demonstration of an Oxyfuel Combustion System

Demonstration of an oxyfuel combustion system of a type and size (40 MW_t) applicable to new build and retrofit advanced supercritical oxyfuel plant.

Doosan Babcock Mk V Burner

CFD Modelling
OxyCoal-UK: Phase 2 – Multi-Fuel Burner Test Facility (MBTF)

Full-scale testing and demonstration of Doosan Babcock, contract or third party burners on the 90 MW_t Multi-fuel Burner Test Facility (MBTF).

- Capability to fire a wide range of fuels
 - Coals, bituminous and low volatiles
 - 8% to 40% volatile matter, dry ash free
 - Up to 35% ash, as fired
 - Up to 20% inherent moisture, as fired

- Facility upgrades
 - Two stage combustion (Summer 2008)
 - Oxyfuel Conversion (Winter 2008)
 - Grit arrestor improvements (Summer 2008)
 - Laser flame mapping (Planned)

CFD Modelling; temperature plot (air-firing)
The three stages of the project are to develop a purpose designed oxyfuel demonstration facility, design and manufacture a burner, and demonstrate of an oxyfuel combustion system.
Concluding Remarks

Doosan Babcock are taking a proactive role in the development and implementation of oxyfuel combustion and carbon capture technologies.

• OxyCoal-UK Phase 1: Fundamentals and Underpinning Technologies
 – Lab- and pilot-scale oxyfuel combustion process performance data being produced and analysed
 – Generic issues identified

• OxyCoal-UK Phase 2: Demonstration of an Oxyfuel Combustion System
 – Planning application approved
 – Revised Scottish Environmental Protection Agency (SEPA) Variation Application submitted
 – Process design complete
 – Mechanical layout design complete
 – HAZOP review complete

• Demonstration of a full-scale (40 MW_i) oxyfuel burner will form the foundation for an oxyfuel boiler reference design
Contact Details

Thank you for your attention!

- glewis@doosanbabcock.com
- www.doosanbabcock.com