Evaluation of gas radiation modeling in oxy-fired furnaces

Robert Johansson

Department of Energy and Environment
Chalmers University of Technology
The oxy-fuel group at Chalmers

- Collaboration with Vattenfall, FLUENT and IVD (Uni-Stuttgart), Alstom and DOOSAN Babcock etc.

Missing on the picture: Daniel Fleig, Daniel Kühnemuth
Oxy-fuel research at Chalmers

Primary objective: Obtain knowledge of need for scaling of the process

Focus areas
- Combustion chemistry: nitrogen, sulphur
- Heat transfer
- Fluid mechanics

Propane and lignite fired tests: Identify and characterize differences between oxy-fuel and air combustion conditions

Modeling: - More detailed modeling of gas radiation, NOx chemistry and sulphur chemistry in connection to the experiments
- CFD-studies
Outline

• Introduction
• Modeling theory
• Experiments
• Results
• Conclusions
Background

Radiation heat transfer is of major importance in design of furnaces

Changed combustion conditions will affect the gas radiative heat transfer
 • Longer pressure path lengths
 • Different ratio of $\text{H}_2\text{O}/\text{CO}_2$
Purpose of the modeling work

Evaluate radiation models for conditions relevant to oxy-fired furnaces

Recommend models for CFD-calculations

Provide a tool that can be of help for evaluation of intensity measurements
Solve the radiative transfer equation (RTE) neglecting scattering

\[\frac{dI_v}{dr} = \kappa_v I_{b,v} - \kappa_v I_v \]

Change of intensity

Increase of intensity due to emission

Decrease of intensity due to absorption

Discretization of a path in homogeneous cells

Modeling theory
Correlated formulation
formal solution
physically correct

$$I_{v,n} = I_{v,0} \tau_{v,0\rightarrow n} + \sum_i I_{bv,i+1/2} \left(\tau_{v,i+1\rightarrow n} - \tau_{v,i\rightarrow n} \right)$$

Wall

Non-correlated formulation
requires less calculations
the most commonly used approach in CFD

$$I_{v,n} = I_{v,n-1} \tau_{v,n-1\rightarrow n} + I_{bv,n-1/2} \left(1 - \tau_{v,n-1\rightarrow n} \right)$$

Wall

Modeling theory

Robert Johansson, Department of Energy and Environment
Tested models

<table>
<thead>
<tr>
<th>Transmissivity models</th>
<th>Model</th>
<th>Nr. of RTEs</th>
<th>Ranges of parameter validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlated formulation</td>
<td>SNBM Malkmus Soufiani and Taine, 1997</td>
<td>367</td>
<td>Cover conditions of interest</td>
</tr>
<tr>
<td></td>
<td>SNBM Goody Leckner, 1972</td>
<td>686</td>
<td>Cover conditions of interest</td>
</tr>
<tr>
<td></td>
<td>EWBM Edwards, 1976</td>
<td>21</td>
<td>Cover conditions of interest</td>
</tr>
<tr>
<td>Absorption coefficient models</td>
<td>SLW Denison and Webb, 1993</td>
<td>Optional, 121 are used in this work (10 for each species)</td>
<td>Cover conditions of interest</td>
</tr>
<tr>
<td>Non-correlated formulation</td>
<td>WSGG Smith et al.1982</td>
<td>4</td>
<td>$600 < T < 2400$ $0.001 < PL < 10$ $P_{H_2O}/P_{CO_2} = 1$ or 2</td>
</tr>
<tr>
<td></td>
<td>WSGG Optimized this work</td>
<td>3 or 4</td>
<td>$500 < T < 2500$ $0.001 < PL < 40$ $P_{H_2O}/P_{CO_2} = 0.125$ or 1</td>
</tr>
</tbody>
</table>
Theoretical cases

uniform and non-uniform paths
radiative source term (infinite plates)
wall fluxes (infinite plates)

Comparison with experiments
Experimental cases

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Out</td>
<td>In</td>
<td>Out</td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>Air</td>
<td>21</td>
<td>3.0</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>OF 21</td>
<td>21</td>
<td>3.0</td>
<td>77</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>OF 27</td>
<td>27</td>
<td>3.8</td>
<td>71</td>
<td>94</td>
</tr>
<tr>
<td>Lignite</td>
<td>Air</td>
<td>21</td>
<td>3.1</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>OF 25</td>
<td>25</td>
<td>3.7</td>
<td>72</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>OF 27</td>
<td>27</td>
<td>3.9</td>
<td>71</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>OF 29</td>
<td>29</td>
<td>4.2</td>
<td>69</td>
<td>94</td>
</tr>
</tbody>
</table>
Measurements

Intensity, temperature and gas concentrations measured along the cross section of several ports.

Intensity measurements
Narrow angle radiometer
Cold black background

Experiments
Evaluation of models: uniform paths

Results
Evaluation of models: wall fluxes (infinite plates)

Temperature given by a cosine profile: 1000-1800K

Results
Comparison with experiments

Propane flame
Port 3: 384mm from burner

Results
Comparison with experiments

Propane, Air Propane, OF 21 Propane, OF 27

Results

Robert Johansson, Department of Energy and Environment
Comparison with experiments

Lignite flame, OF25

Results

Robert Johansson, Department of Energy and Environment
Conclusions

• The existing parameters of the WSGG model are intended for air fired conditions and often yield significant errors for conditions relevant for oxy-fired furnaces.

• The new WSGG parameters give results within 20% of the reference model.

• The WSGG model is suitable for CFD-calculations in terms of accuracy and computational cost.

• Conditions with significant amounts of soot and particles requires less accuracy of the gas radiation modeling.

• Modeling has confirmed the differences in soot concentration observed in the propane flames.
Thank you for your attention!