Oxygen Production Technologies: Cryogenic and ITM

by:

Kevin Fogash
Air Products and Chemicals, USA
Oxygen Production Technologies: Cryogenic and ITM

Phil Armstrong, Kevin Fogash
Air Products and Chemicals, Inc.
Allentown, Pennsylvania

2nd IEAGHG International Oxy-Combustion Network Workshop
Windsor, CT, USA
25-26 January 2007

Air Separation

- Cryogenic air separation includes these major steps:
 - Compressing air
 - Air impurity removal (Pretreatment)
 - Cooling/liquefying air
 - Distillation

- Scale up of advanced oxygen production technology – ITM Oxygen
The ASU Process

Main and Boost Air Compression

Air Cooling and Pretreatment

Cryogenic Separation

Storage

Main & Boost Air Compression

- Inlet air flow determines machine selection

Air Flow

Axial-Radial

Integral Gear Centrifugal

In-line Centrifugal

Oxygen
Cryogenic Heat Exchange

- Brazed aluminum plate fin exchangers
- Cools air streams against product streams to recover refrigeration
- Ambient to cryogenic temperatures

Separation by Distillation

- Gaseous Oxygen (Oxygen Compressor Option)
- Air
- Liquid Oxygen Nitrogen

- “Cold Box”
- Pure Nitrogen (Boils at -190°C / -310°F)
- Pure Oxygen (Boils at -177°C / -286°F)
- Pure Nitrogen (Boils at -175°C / -283°F)
- Enriched Air (Boils at -168°C / -270°F)
Manufacturing

- Manufacture/erection approach is project specific

- **Shop manufactured distillation columns**
- **Shop manufactured cold boxes**
- **Field erected column can**

ITM Oxygen Enables a Step-change Reduction in the Cost of Oxygen

- Conceptional ITM Oxygen vessel scaled to match cryogenic oxygen plant output
Ion Transport Membranes (ITM): High-flux, High-purity Oxygen

- Mixed-conducting ceramic membranes (non-porous)
- Typically operate at 800-900 °C
- Crystalline structure incorporates oxygen ion vacancies
- Oxygen ions diffuse through vacancies
- 100% selective for O₂

\[O_2 \text{ flux} \propto \frac{1}{L} \ln \left(\frac{P_{O_2}}{P_{O_2}'} \right) \]

Compressed air decomposes:

\[\frac{1}{2}O_2 + 2e^- \rightarrow O^2- \]

100% selective for O₂

Ceramic Membranes: Revolutionary Technology for Tonnage Oxygen Supply

- Single-stage air separation leads to compact designs
- Low pressure drop on the high-pressure side
- High-temperature process has better synergy with power generation systems
- Extraordinary flux enables large tonnage production economics

0.5 TPD module (commercial-scale)
ITM Oxygen integrates well with power generation cycles

ITM Oxygen separator integrated with a gas turbine-based power cycle

ITM Oxygen is Simpler and Requires Less Power

ITM O2 Has Much Simpler Flow Sheet and >35% Less Capital
ITM O2 Has 35-60% Less Compression Energy Associated with Oxygen Separation
ITM Oxygen has Excellent Economic Performance in Many Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Oxygen (sTPD)</th>
<th>Power (MW)</th>
<th>Capital for Oxygen</th>
<th>Power for Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGCC</td>
<td>3200</td>
<td>458</td>
<td>35%</td>
<td>37%</td>
</tr>
<tr>
<td>Decarbonized Fuel†</td>
<td>2400</td>
<td>300</td>
<td>35%</td>
<td>36%</td>
</tr>
<tr>
<td>Enrichment*</td>
<td>1500</td>
<td>260</td>
<td>27%</td>
<td>69%</td>
</tr>
<tr>
<td>Oxyfuel†*</td>
<td>8030</td>
<td>500</td>
<td>48%</td>
<td>68%</td>
</tr>
<tr>
<td>GTL</td>
<td>12,500</td>
<td>n/a</td>
<td>20+%</td>
<td>n/a</td>
</tr>
</tbody>
</table>

† enables carbon capture
* uses existing gas turbine offerings

ITM Oxygen Program

- **Goal:** Reduce Cost of Oxygen by One-Third
- **DOE/Air Products R&D started 1999 (11 year, $148 million)**
 - Phase 1: Technical Feasibility (0.1 TPD O2)
 - Phase 2: Prototype (1-5 TPD O2)
 - Phase 3: Pre-commercial Development (25+ TPD)
 - Planning 150 TPD
- **Development Team**
The SEP was started up in Oct. ’05, commissioned in April ‘06
Initial SEP work highly successful

- Several trials with 0.5-TPD modules since May
- Demonstrated >99% oxygen purity from commercial-scale module and seal
- Oxygen flux consistently has met or exceeded expectations, and has been steady
- Currently running modules through start-up/shutdown cycles to test reliability
Conclusions

- Cryogenic air separation proven and available at scale
- Major Phase 2 ITM Oxygen development objectives have been met
 - Built and tested commercial-scale ITM Oxygen modules successfully
- Air Products and the U.S. DOE are planning an expanded Phase 3 to enable ITM Oxygen to produce large-tonnage quantities of oxygen in the FutureGen plant

Acknowledgment: DOE/NETL

This paper was written with support of the U.S. Department of Energy under Contract No. DE-FC26-98FT40343. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper.

Disclaimer

A significant portion of this report was prepared by Air Products and Chemicals, Inc. pursuant to a Cooperative Agreement partially funded by the United States Department of Energy, and neither Air Products and Chemicals, Inc. nor any of its contractors or subcontractors nor the United States Department of Energy, nor any person acting on behalf of either:

1. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
2. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Department of Energy.
Thank You…
tell me more

http://www.airproducts.com

ITM@airproducts.com
Phone: 610 481 4475
Fax: 610 706 7420