Experiences from Commissioning and Test Operation of Vattenfall’s Oxyfuel Pilot Plant

1st International Oxyfuel Combustion Conference
Germany, Cottbus, 7th – 11th September 2009

Uwe Burchhardt
Project Manager Oxyfuel Pilot Plant
Vattenfall Europe Generation, Germany
1. Introduction
2. Technical Concept of Oxyfuel Pilot Plant
3. Oxyfuel experiences from test operation
4. Outlook and summary
Decision process for the Oxyfuel Pilot Plant

2002
GAP Analysis
- Start of project
- Available components
- Known process steps
- Degree of development

2003
Technology Benchmark
- Evaluation of different steps of development
- Decision to develop Oxyfuel

2004
Feasibility Study
- Financial frame
- Comparing scales
- Possible sites
- Risks

2005
Decision for Oxyfuel Pilot Plant
- Building site: Lausitz area
- Scale: 30 MWth
- Complete process chain from ASU to CO₂ processing
Design considerations for Oxyfuel Pilot Plant

- Basic purpose is to provide operating information to be able to later scale-up the technology to a 400-600 MW demonstration power plant.

- Realization a complete process of coal input and oxygen production up to separation of CO₂.

- Possible to operate on full load in air-firing mode and oxyfuel mode.

- Designed to be able to operate on lignite and in a second phase on bituminous coal.
Location of the Oxyfuel Pilot Plant

Power plant “Schwarze Pumpe”

Building site
Time schedule and milestones

- July `05 project start
- 23.11.06 notice of approval
- March `08 end of construction
- 05.06.08 first fire (ignition burner)
- 26.06.08 first coal fire (main burner)
- 20.08.08 first Oxyfuel operation
- 03.09.08 first separation of CO₂
- 09.09.08 official inauguration

Planning
- 2005
- 2006
- 2007
- 2008
- 2009
- 2010
- 2011

Approval process
- 2006

Construction phase
- 2007

Commissioning
- 2008

Operation
View on the Oxyfuel Pilot Plant

- **Thermal capacity:** 30 MW_{th}
- **Coal demand:** 5.2 t/h
- **Oxygen demand:** 10 t/h
- **CO₂ (liqu.) production:** 9 t/h
- **CO₂ Capture rate:** > 90%

Webcam: www.Vattenfall.de/CCS
Main Contractors

General planer

VATTENFALL

ALSTOM
Boiler / ESP
Oxyfuel technology

Linde
ASU / CO₂ plant
CO₂-process technology

FGD

SIEMENS
I&C system

TREMA®
FGC

HITACHI
Burner,
Combustion technology

2009-09-08 | IEA Oxyfuel Conference, U.Burchhardt (VE-G)
Main operating results (until August 2009)

- Summation Operating hours : 3.100 h
- Operating hours air mode : 1.500 h
- Operating hours Oxyfuel : 1.600 h
- Captured amount of CO₂ : 1.400 t
2. Technical Concept of Oxyfuel Pilot Plant
System overview of Oxyfuel Pilot Plant

- **Pulverised Coal**
- **Cold Recirculation**
- **Sealgas <1.2 bar**
- **Sealgas 6 bar**
- **Steam-HEx**
- **Air**
- **ASU**
- **Oxygen**
- **Nitrogen**
- **Fan 1**
- **Fan 2**
- **FGD**
- **FG-Condenser**
- **CO₂-Process**
- **Dry Ash**
- **ESP**
- **2. Pass**
- **DeNOx**
- **3. Pass**
- **Steam-HEx**
- **Hot Recirculation**
Specific plant features

Sep. start burner on gas basis (propane)

Coal-Input with dry and CO2 rich

Seal gas systems to reduction of air inleakage

30 MW burner performance good Scale-up possibility

Flue gas cooler test inlet temperature in FGD

O2-Mix with static mixers

Sulfur rich recirculation Assessment SO2-/SO3 enrichment in boiler and recirculation necessary
3. Oxyfuel experiences from test operation
Experiences with boiler

- Proven start burners (propane) having problems in Oxyfuel atmosphere due to high dust loads (Flame guards and installation situation had to be optimized)
- Authority demand: Individual burner examinations for all operating states
- Good flame stability in Oxidant at $O_2 > 21\% (w)$
- 25 -30 % humidity in hot recirculation
- Supplying of pure O_2 and mixture in the burner possible
- Use of a single burner influences the burning behavior and the flue gas composition
- Different burner swirls necessary for air and oxyfuel operation
Change load Air to Oxyfuel in 20 minutes
Requirements on flue gas scrubbing

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition</th>
<th>Reduction from*</th>
<th>to*</th>
<th>Capture rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESP</td>
<td>Ash</td>
<td>11.200 mg/m³</td>
<td>< 20 mg/m³</td>
<td>> 99 %</td>
</tr>
<tr>
<td></td>
<td>SO₂</td>
<td>11.500 mg/m³</td>
<td>< 100 mg/m³</td>
<td>> 99 %</td>
</tr>
<tr>
<td>FGD</td>
<td>SO₃</td>
<td>50 mg/m³</td>
<td>< 20 mg/m³</td>
<td>> 50 %</td>
</tr>
<tr>
<td></td>
<td>Ash</td>
<td>20 mg/m³</td>
<td>< 10 mg/m³</td>
<td>> 50 %</td>
</tr>
<tr>
<td>FG-Condenser</td>
<td>H₂O</td>
<td>30 vol-%</td>
<td>4 vol-%</td>
<td>> 85 %</td>
</tr>
<tr>
<td></td>
<td>SO₂</td>
<td>100 mg/m³</td>
<td>< 20 mg/m³</td>
<td>> 80 %</td>
</tr>
<tr>
<td></td>
<td>SO₃</td>
<td>20 mg/m³</td>
<td>< 5 mg/m³</td>
<td>> 75 %</td>
</tr>
<tr>
<td></td>
<td>Ash</td>
<td>10 mg/m³</td>
<td>< 1 mg/m³</td>
<td>> 90 %</td>
</tr>
</tbody>
</table>

All design data are fulfilled!

* all mg/m³ in Norm (dry)
CO₂ - Process (Cleaning, compression, drying, liquefaction)

FG- Input
CO₂ ~ 85 %
O₂ ~ 5 %
N₂+Ar ~ 5 %
H₂O ~ 4 %
CO < 600 mg/m³
NOₓ < 750 mg/m³
SOₓ < 20 mg/m³

Use Ventgases for regeneration of Adsorber

Ventgas
CO₂ ~ 35-40 %
O₂ ~ 30-35 %
CO ~ 500 mg/m³
SO₂ ~ 10 mg/m³
NO ~ 10 mg/m³

CO₂ - Output
CO₂ > 99.7 %
17 bar, -25°C

> 90 % CO₂-recovery

CO₂-recovery

Coolant circulation
(Ammonia/CO₂)

FGC
Pre-Compressor
Activated carbon filter
Main-Compressor
Adsorber

0.3 bar
21.5 bar
19.0 bar

H₂O
H₂O
H₂O

SO₂, SO₃, HCl, Heavy metals (Hg, Cd, ….)
H₂O
H₂O

1 ppm H₂O

2-stage

All %-details in Vol.-%
Attainable CO₂ purities

<table>
<thead>
<tr>
<th>Composition CO₂, liquid</th>
<th>Oxyfuel pilot plant (Technical CO₂)</th>
<th>Comparison to Food quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>> 99.7 %</td>
<td>> 99.99 %</td>
</tr>
<tr>
<td>N₂+Ar+ O₂</td>
<td>< 0.3 %</td>
<td>< 30 ppm</td>
</tr>
<tr>
<td>H₂O</td>
<td>< 50 ppm</td>
<td>< 50 ppm</td>
</tr>
<tr>
<td>SO₂</td>
<td>< 2.5 ppm</td>
<td>< 1 ppm</td>
</tr>
<tr>
<td>SO₃</td>
<td>< 0.5 ppm</td>
<td>-</td>
</tr>
<tr>
<td>CO</td>
<td>< 10 ppm</td>
<td>< 10 ppm</td>
</tr>
<tr>
<td>NO</td>
<td>< 5 ppm</td>
<td>< 2.5 ppm</td>
</tr>
<tr>
<td>NO₂</td>
<td>< 15 ppm</td>
<td>< 2.5 ppm</td>
</tr>
</tbody>
</table>
4. Outlook and summary
Outlook on test program

- Variation of coal quality (moisture, sulphur content, particle size).
- Test of different burners with integrated ignition burner.
- Special measurement technique for flue gas composition and CO₂ monitoring.
- Material tests for demo plants and 700°C technology under Oxyfuel atmosphere.
- Tests of co-firing biomass and bituminous coal.
- DeNOₓ tests at the boiler and for the vent gas stream from the CO₂ plant.
- Test of an “alternative CO₂-Process”
Integration CO₂-plant Air Products (AP) in the Oxyfuel Pilot Plant (OxPP)

OxPP

Gips Kreide

FGD

Pre-Compressor Activated carbon filter Main-Compressor Adsorber

SO₂, SO₃, HCl, Heavy metals H₂O H₂O H₂O

19 bar

1 ppm H₂O

Ventgas

3 % of FG

FGD

Cooler

FGC

Condensate

2-stage SOx/NOx separation

AP

15 bar

30 bar

H₂SO₄

H₂SO₄+HNO₃

Rest gasses

Condensate

Condensate

CO₂

57 bar

gas. CO₂

Ventgas

CO₂-Recycle Membrane
Area and layout of the „Alternative CO2-Process“
Roadmap for CCS

Testrigs: 0.1 – 0.5 MW_{th}

Pilot plant: 30 MW_{th}

Demonstration plant: 300 – 700 MW_{th}

Commer. plant: ~ 1000 MW

2001
- theoretic Investigations

2004
- Research
- Basic principles
- Combustion characteristics

2008
- Demonstration of the complete process chain
- Interaction of components
- Validation of test rig results
- Investigation of scale up criteria

2014 – 2015
- Verification und Optimisation of components
- Reduction of risks
- Verification of commercial availability (subsidiaries necessary)

2020
- Economic and competitive power plant concept
- No need for subsidiaries
Layout of Vattenfall’s next generation power unit

CCS Demo Project Jänschwalde

- Oxyfuel boiler
- Amin scrubbing
- CO₂ plant
- ASU
- Coal drying
Summary

• Oxyfuel works in pilot scale, emission limits are kept, CO₂ quality reached
• Successful integration of plant components from chemical industry (ASU, CO₂ plant)
• Gained experiences from permission process and implementation of secondary clauses for CCS power plants
• CO₂ monitoring over the whole technology chain (capture – transport – storage) developed for the first time world wide
• First steps towards full scale CCS plants is successfully done
• Very important for the investment of the demo plant is the consent to the public funding.
Thank you for your attention!
Available fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Pulverized lignite</th>
<th>Dryed lignite</th>
<th>Black coal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lay-out</td>
<td>Range</td>
<td>Lay-out</td>
</tr>
<tr>
<td>Granulation Spread</td>
<td>0 – 1 mm</td>
<td>60%< 0,1 mm</td>
<td>1 mm</td>
</tr>
<tr>
<td></td>
<td>13%> 0,2 mm</td>
<td>3-18% >0,2mm</td>
<td><5%>2 mm</td>
</tr>
<tr>
<td>LHV</td>
<td>21,0 MJ/kg</td>
<td>20,4-22,5 MJ/kg</td>
<td>20,0 MJ/kg</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>10,5 Mass%</td>
<td>8-12 M%</td>
<td>15 Mass%</td>
</tr>
<tr>
<td>Ash</td>
<td>6,0 Mass%</td>
<td>4,5-7,5 M%</td>
<td>5,7 Mass%</td>
</tr>
<tr>
<td>Carbon</td>
<td>56,5 Mass%</td>
<td>54-60 M%</td>
<td>54 Mass%</td>
</tr>
<tr>
<td>Oxygen</td>
<td>21,5 Mass%</td>
<td>20-22 M%</td>
<td>20,5 Mass%</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>4,0 Mass%</td>
<td>3.5-4,5 M%</td>
<td>3,8 Mass%</td>
</tr>
<tr>
<td>Sulfur</td>
<td>< 0,8 Mass%</td>
<td>0,4-1,2 M%</td>
<td>1,0 Mass%</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>0,7 Mass%</td>
<td>0,6-1,1 M%</td>
<td>0,7 Mass%</td>
</tr>
<tr>
<td>Chlorides</td>
<td>80-260 mg/kg</td>
<td>15-70 mg/kg</td>
<td></td>
</tr>
<tr>
<td>Fluorides</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CO₂- plant in detail

- Rectification
- Compressor building
- Activated carbon filter
- Analysis container
- CO₂-tanks (2x180 m³)
- Trailer docking station