Oxycoal Swirl Flame Stability as a Function of Flue Gas Recycling Ratio

D. Toporov, M. Förster, R. Kneer
Institute of Heat and Mass Transfer, RWTH Aachen University, Germany

1st OXYFUEL COMBUSTION CONFERENCE
Cottbus, 8th - 11th September 2009
Presentation Content

- OXYCOAL-AC project overview
- Oxycoal Swirl Burners and Test Facility
- Utility Scale Furnaces Simulations
- Conclusions
Oxyfuel Process

Cryogenic Air Separation Unit or Oxygen Transport Membrane (OTM)

Flue Gas (CO₂ & H₂O)

Coal

O₂

O₂ + CO₂ + H₂O

CO₂ compressor

Water

Steam

Condenser

H₂O

CO₂

OXYCOAL-AC
Membrane Based Oxyfuel Process

OXYCOAL-AC

Flue Gas
(CO₂ & H₂O)

Ash

Condenser

CO₂ compressor

Hot Gas Filtration

Steam

Steam

N₂

Air

O₂

O₂ + CO₂ + H₂O

Coal

OTM

OXYCOAL-AC

O₂

C02

H₂O

Topics:
- Coal Combustion in O₂/CO₂-Atmosphere
- High temperature membrane for oxygen supply
- Hot Gas Filtration

Long term planning:
Phase 1: (Sep 2004 to Jan 2008)
- Component development
Phase 2: (Feb 2008 to Feb 2011)
- Process integration and Component testing
Oxygen Transport Membrane (OTM)

![Diagram showing OTM process]

Ceramic Perovskite Membranes:

Operating Parameters:
- Temperature: 825 °C
- Mean Pressure Ratio: 20
- Mean Partial Pressure Ratio: 26
- Oxygen Separation Degree: 90 %
 (O₂ in depleted air: 2.5 vol.-%)

Goal:
Design, construct and integrate an O₂/N₂ separation membrane in an oxyfuel power plant process ➔ realise the process with highest efficiency
Goal:
Cleaning of the flue gas to a level suitable for the membrane and the recirculation fan.
Goal:
Cleaning of the flue gas to a level suitable for the membrane and the recirculation fan.
Combustion in CO₂ Atmosphere

Goal:

- Obtain stable and controlled oxycoal combustion at wide range of O₂-concentrations (15-30 vol.-%)

Starting point:

- Generic O₂/CO₂-mixture
- Thermo-physical and radiative properties
OXYCOAL-AC Test Facility

- **T = 300°C**
- **T = 850°C**
- Traversable burner
- Stack
- Compressor
- Window
- **O₂ injection**
- Cooler
- Hot gas filtration
- Ash
- **Coal**
- Wind box
- **Gas mixing unit**
- **CO₂**
- **O₂**
- Quench
- Water
- Stack
- Ash, quench water
OXYCOAL Tests
with Increased O_2- Levels

First approach:

- Utilizing a burner well-proven for air operation

pulsating flame
($O_2 < 34 \text{ vol.}-\%$)
Boudouard Equilibrium

Endothermic reaction (173 kJ/kmol)

\[\text{CO}_2 + \text{C} \rightarrow 2 \text{CO} \]

Volume doubling (local oscillations)
Stabilising the flame: Oxycoal Burner

Measures to stabilise the flame:

- Constant flow velocities by stabilising the CO-production
- Strong internal recirculation of hot products to compensate for the increased heat capacity and the endothermic Boudouard reaction

Burner characteristics:

- Stable operation for O_2 concentration ≥ 18 vol.-%
- Can also be operated with air
Development of Oxycoal Swirl Burner

Measures for oxycoal swirl flame stabilisation

CFD calculations

21 vol.-% O₂
19 vol.-% O₂
18 vol.-% O₂
Numerical Simulations (FLUENT®)

- Heterogeneous and homogeneous reactions are modelled as UDFs:
 - Chemical reaction – turbulence interaction model: EDC + kinetics;
 - Devolatilisation models: 2 parallel reactions and CPD (+ LG sub-model);
 - Char-burnout models: apparent kinetics (CBK), Intrinsic and Langmuir approach

- Radiative Heat Transfer
 - Exponential Wide Band Model (11 Bands for CO₂, H₂O, CO) as UDF*

- Changes in the CFD algorithm for oxycoal conditions:
 - Parallel calculation of particle models (pyrolysis and char burnout)
 - Modelling of the heterogeneous reactions (char with O₂, CO₂, H₂O)

- Model validation
 - fluidised bed reactor for pyrolysis and char reactivity in CO₂
 - in-flame measurements at OXYCOAL-AC test facility**

* Erfurth et al., CCT 2009, Dresden, May 2009
** Toporov et al., Combust. Flame 155, 605-618, 2008
Burner Scale Up: CFD Results, 100 kW

Secondary stream, 21 vol.-% O₂

Coal + primary stream, 19 vol.-% O₂

Pyrolysis [kg/(m³s)]

CO mass source [kg/(m³s)]

Fast pyrolysis and particle ignition

≥ 1.1

1

0.5

0

0.2

0.1

0

0.1

0.2

m
New Burner Design:

40 kW

100 kW
80 kW Flames

Air

21 vol.-% O_2, rest CO_2 (dry)

21 vol.-% O_2, rest RFG (wet)
Combustion in CO$_2$ Atmosphere

- Large scale:
 - burners;
 - furnaces

Goal:
Design of an oxycoal boiler, accounting for the changed combustion atmosphere
The utility p.c. burner should be able to operate:

- in air combustion and

- within a wide range of O_2 vol.-% under oxycoal conditions

Not scale-up, but modification of conventional utility scale burners according to the measures for oxycoal swirl flame stabilisation
Utility Scale Burner (70 MW_{th})

Secondary / tertiary streams, 21 vol.-% O_2

Coal + primary stream, 21 vol.-% O_2

Pyrolysis
[kg/(m^3s)]

CO mass source
[kg/(m^3s)]

Fast pyrolysis and particle ignition
Oxycoal furnace performance compared to air-firing?

- Oxy-firing offers the possibility to vary a large set of parameters, e.g.
 - Temperature levels;
 - Oxygen concentration (recycle ratio);
 - Composition of recycled flue gas (wet or dry recycle)

- Impact on:
 - Heat transfer
 - Furnace exit temperature
 - Corrosion in the furnace
Utility Furnace (state-of-the-art USC) OXYCOAL-AC

- Thermal power: 1210 MW
- 18 burners → 70 MW each ($\lambda = 0.95$)
- 12 OFA nozzles ($\lambda_{\text{tot}} = 1.15$)
- Fired by South African bituminous coal
- 1,240,000 grid points
- 5 Cases:
 - AIR
 - Oxycoal, same oxygen: OXY21dry, OXY21wet
 - Oxycoal, same temperature: OXY30dry, OXY27wet
Temperature Fields, same O$_2$ vol.-%
Temperature Fields, similar T_{flame}

OXYCOAL-AC

<table>
<thead>
<tr>
<th></th>
<th>AIR</th>
<th>OXY30dry</th>
<th>OXY27wet</th>
</tr>
</thead>
<tbody>
<tr>
<td>T [K]</td>
<td>2300</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td></td>
<td>300</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- The graphs illustrate temperature fields for different oxygen-enriched environments.
- The temperature range is from 300 K to 2300 K.
- The color scale indicates temperature variation.
CO Source from Particle Gasification, same O$_2$ vol.-%
CO Source from Particle Gasification, similar T_{flame}

\[
\log S_{\text{CO}} \quad [\text{kg}/\text{m}^3\text{s}]
\]

AIR

OXY30dry

OXY27wet
Surface Incident Radiation, same O₂ vol.-%
Surface Incident Radiation, similar T_{flame}

\[q' = \text{[kW/m}^2\text{]} \]

AIR OXY27wet OXY30dry

Locally increased wall temperature
Comparison:
Normalised Surface Incident Radiation

![Graph showing comparison of O2 content and Q/Q_AIR for different conditions.

- AIR
- OXY21wet
- OXY21dry
- OXY27wet
- OXY30dry

Integrated over furnace walls:
- 23.8%
- 28.6%
Comparison: Temperature* and Enthalpy Flow (H)

* averaged at furnace exit
Summary

- Development, test and scale-up of a ~ 100 kW oxycoal swirl burner for stable operation in air- and oxy-firing:
 - within a wide range of O₂ vol.-% (18 to > 34 vol.-%)
 - with wet and dry recycling
- Measures derived for oxycoal swirl flame stabilisation successfully applied to utility scale single burner
- CFD simulations of a state-of-the-art furnace in air and oxy-firing of coal were conducted using a non-grey implementation of the EWBM
 - Same incident radiation as for air-firing obtained at oxygen content of:
 - ~ 24 vol.-% for wet recycle
 - ~ 28 vol.-% for dry recycle
Acknowledgements

This work was conducted in the framework of the project OXYCOAL-AC and was funded by:

- German Federal Ministry of Economics and Technology
- Ministry for Innovation, Science, Research and Technology of the State of North Rhine-Westphalia
- RWE Power
- E.ON Energie
- Linde
- MAN Turbo
- Hitachi Power Europe
- WS Wärme prozesstechnik
Acknowledgements

Thanks to the colleagues from the Oxycoal Group at the Institute of Heat and Mass Transfer, RWTH Aachen University

Michael Warnke, Malte Förster, Oliver Hatzfeld, Wolfgang Engels, Vincent Verbaere, Peter Heil, Peter Horstmann, Dominik Christ, Martin Habermehl, Hannes Stadler, Stefan Tschunko, Jens Erfurth, Andreas Ohliger, Arno Kellermann and Dobrin Toporov,

20.08.2009, Aachen, Germany