Oxygen Supply for Oxyfuel CO$_2$ Capture

1st OXYFUEL COMBUSTION CONFERENCE
8th - 11th September 2009
Radisson Hotel, Cottbus, Germany

Vince White, Phillip Armstrong
and Kevin Fogash
Air Products
9th September 2009
Agenda

- Oxyfuel Combustion
- Proven Large-Scale Oxygen Supply: Cryogenic Air Separation Units
 - Industry experience with very large ASU
 - Overview of the process
 - Challenges specific to oxyfuel combustion
- Next Generation Oxygen Production: Ion Transport Membranes (ITM)
- Conclusions
Oxyfuel combustion requires...

- Air Separation Units
- Steam Boiler & Turbine
- CO₂ Purification & Compression
- CO₂ Transport & Sequestration

Diagram showing the process flow of oxygen supply, steam boiler & turbines, CO₂ transport & sequestration, CO₂ purification & compression, and coal flow with flue gas recycle.
Large air separation units (ASUs)
Demonstrated Air Separation Capabilities

- **Technology base**
 - Cryogenic air separation
 - Up to 7,000 t/d
 - plus co-product nitrogen, argon, and other rare gases
 - Nitrogen only configurations
 - Non cryogenic air separation
 - From 2 t/d
 - Adsorption (PSA/VSA)
 - Membrane

- **Experience**
 - Worldwide presence
 - >1,200 air separation units owned or sold
 - >500 units operated and maintained
 - Major pipeline systems include:
 - US Gulf Coast
 - California
 - Rotterdam, Netherlands
 - China
 - Korea
 - South Africa
Experience - Large ASU Projects and Train Scale-up

- Market drives ASU scale-up
- Proven 70% scale-up
- Quoting 5,000+ MTPD today
Overview Of The Process

Main and Boost Air Compression

Air Cooling and Pretreatment

Cryogenic Separation

Storage

Air

Oxygen

Heat

Heat

Heat
Process Cycle Selection Criteria

- Oxygen demand profile
 - Purity
 - Pressure
 - Demand pattern, quantities, duration, frequency

- Argon co-production required?

- Power evaluation criteria

- Capex sensitivity

- Process integration philosophy

- Utility constraints, e.g. steam availability & quality, water consumption

- Operating constraints, e.g. availability, reliability, time to on stream, ramp rate.
A5000 Single Train
Design based on customer’s specific requirements:

- Parasitic load
 - Power vs. Capital costs
 - Purity requirements
 - Co-products
 - Compression integration
- Manufacturing
 - Transport of ASU(s) to site
 - Reducing construction / erection costs and risks
- Operability
 - Fit with customer’s use patterns
 - Turndown / ramping up
 - Advanced control capabilities
- Reliability
Power Costs and Design

Power is the single most important component of the ASU cost.

- Equipment
- Manufacturing
- Construction
- Engineering
- Operations

$0.05 / kWhr
$0.09 / kWhr

Technology and capital improve ASU Power consumption.
Power Consumption Reduction Opportunities

2012 Goal = 150-170 kWhr/ton

Front End Technology
5 kWhr/ton

Heat Exchange Technology & Equipment
20 kWhr/ton

Cycle Improvements
10 kWhr/ton

(*) 1 BAR - GOX only
Advanced Packing for Distillation Technology

- Structured Packing
 - Lower pressure drop – saves air compressor power
 - Better turndown
 - Higher plant capacity

- Sieve trays
 - Shorter columns
Compression: VLASU Design Considerations

- Compression is typically a large component of the cost stack
- We consider power valuation when designing # of trains
 - Multistage or single stage cooling
- Cooling water integration
 - Location of plant
 - Cost of cooling water / Type of systems
- Compression Driver
 - Steam turbines
 - Gas turbines
 - Motor technology / Starting system
- Erection / Packaging strategy
 - Field erect
 - Shop modules (pre-package)
- Cost Impacts
 - Axial vs. In-line cost or integral gear (up to 7000 TPD)
 - Need for soft start as compressor motors increase in size
 - Limited or reverse economies of scale for large vessels, piping and valves
 - Shipping costs or transportation limits
Compression: Design Considerations

Oryx- Qatar – 2x3500 TPD

- MAC—Steam Turbine—BAC
- Air Cooled Condenser
- Shop Skids
- String Test

A5000 and A7000 TPD – Single Train Compression

- Axial main air compressor (no GT integration)
- In-line boost air and nitrogen compressors
- Four large suppliers = GE, MHI, Siemens, MAN

A5000:
- GE Frame 7
- Siemens STC 1000
- MAN AR130-AR140
- MHI M501D

A7000:
- GE Frame 7 - Frame 9
- Siemens STC 1300
- MHI M501F

A5000 and A7000 TPD – (2x Compression – Multitrain)

- Integral gear (GT Copco or STC) or In-line air compressors (RIK)
- Integral gear or In-line boost air and nitrogen compressors (if N2 needed)
Process Integration Goals and Methods

- Reduce cost/improve efficiency without compromising operability

- “Easy” integrations
 - Use of by-product energy (Steam)
 - Combined utility systems (Cooling Water)
 - Air/nitrogen integration with gas turbines

- “Harder” integrations
 - Internal streams between process units
 - Start-up requires other units to be in operation
Reliability

- Air Products operates the majority of plants that it designs and builds

- Thousands of man-years of ASU operating experience includes customers that require 100% availability of products
 - Average plant availability is greater than 99%
 - Average duration of plant trip is ~16 hr
 - Spare parts handling strategies in place
 - Maintenance shutdown once/3+ yrs
 - Coincide with normal power plant maintenance
 - Instantaneous back-up systems in place today in safety-sensitive and electronic applications

Outage Duration 1995 - 2008

- 8 - 16 Hours: 17.1%
- < 8 hours: 38.2%
- >24 Hours: 27.6%
- 16 - 24 Hours: 17.1%
Operability: Plant Ramping, Advanced Controls technology

- Benefits of Advanced Control capabilities
 - Lower power consumption
 - Higher product recoveries
 - Faster disturbance response and mitigation
 - Faster response to changing product demands
 - Higher multi-plant efficiency

- ASU ramping capabilities
 - 1%/min typical
 - 2%/min achievable with advanced control
 - 3%/min possible when “designed in”
 - Higher rates possible by using liquid oxygen backup
Agenda

- Oxyfuel Combustion
- Proven Large-Scale Oxygen Supply: Cryogenic Air Separation Units
 - Industry experience with very large ASU
 - Overview of the process
 - Challenges specific to oxyfuel combustion
- Next Generation Oxygen Production: Ion Transport Membranes (ITM)
- Conclusions
ITM: Revolutionary Technology for Tonnage Oxygen Supply

Goals for ITM in power applications:

- Reduced footprint with lower capital cost
- High-purity, High flux oxygen with lower parasitic power requirement
- High-temperature process has better synergy with power generation systems

0.5 TPD module (commercial-scale)
ITM Oxygen Program

Targeting Reduction in the Cost of Oxygen by One-Third

- Phase 1: Technical Feasibility (0.1 TPD O₂)
- Phase 2: Prototype Testing (1-5 TPD O₂)
- Phase 3: Intermediate Scale Testing (150 TPD O₂)

- Broad, multi-disciplinary team
Ion Transport Membranes (ITM) provide high-flux, high-purity Oxygen

- Mixed-conducting ceramic membranes (non-porous)
- Operate around 800 - 900°C
- At high temperature, the crystalline structure incorporates oxygen ion vacancies
- Oxygen ions diffuse through vacancies
- 100% selective for O₂

\[O_2 \text{Flux} \propto \ln \left(\frac{P'_0}{P''_0} \right) / L \]
ITM Oxygen integrates well with power generation cycles

Previous studies have shown ITM Oxygen requires 30% less capital and 30-60% less energy than a cryogenic oxygen plant.
ITM Oxygen commercial modules continue to be tested in the 5 TPD Pilot Plant

- ITM Vessel Internals
- Flow Duct Installed
- 2 Modules Installed
- Heater
- Make-up Streams
- Control Room
- Vacuum Pumps
- 6 Independent Product Trains
- Heat Exchangers

515 days operation
- Demonstrated Purity
- Demonstrated Flux
- Testing Operations
- Demo’d thermo-cycling
Next stage scale-up is in design: Intermediate-Scale Test Unit (ISTU)

- Forward schedule envisions completion of construction in late 2010

- Goals include:
 - Produce 150 TPD oxygen from an ITM Oxygen system integrated with power co-production equipment
 - Use fuel as primary energy input to the system
 - Use commercial design concepts toward scale-up to the next test platform (~2000 TPD)
ITM Oxygen Enables a Step-change Reduction in the Cost of Oxygen

2500 TPD Oxygen Plant

ITM Oxygen vessel scaled to match cryogenic oxygen plant output
Summary

- There is a major new industry requirement for ASUs from fossil-fuel fired power generation.
- ASUs have changed a great deal in the past 15 years:
 - New cycles
 - Structured packing for distillation
 - More power efficient
- Single train sizes over 5000 tonne/day
- Integration with CO₂ capture unit
- Manufacture/erection approach is project specific
It is about more than just O_2...

- **APPLICATION EXPERIENCE:** Supplied large oxygen/air separation equipment to all type of applications and industries:
 - Power
 - Gasification
 - Metals
 - Refining / Petrochemicals

- **INTEGRATION EXPERIENCE:** Air separation plants in all integration modes—
 - Oxygen supply control system
 - Load following, start-up shutdown, peak-shaving
 - MAC heat recovery
 - Off-gas oxygen recovery for boiler blended to LASU O_2
 - Standalone, nitrogen integrated, and air/nitrogen integrated (IGCC)

- **MEGA-TRAIN EXPERIENCE:** Operating very large single train air separation plants since 1997 in Rozenburg, The Netherlands (3250 MTPD); also installed a 2x3500 MTPD unit in Qatar

- **RELIABILITY:** First company to supply high-reliability tonnage oxygen for power projects without oxygen backup

- **OTHER GAS PRODUCTS:** Broad industrial gas industry experience creates synergies with H2, CO, and CO$_2$ markets
Acknowledgement

The authors gratefully acknowledge the contributions by the members of the ITM Oxygen team at Air Products, Siemens, Ceramatec, GE Energy Gasification, DOE, EPRI, Concepts NREC, NovelEdge, SOFCo EFS, Eltron Research, Penn State University, and Univ. of Pennsylvania.

This technology development has been supported in part by the U.S. Department of Energy under Contract No. FC26-98FT40343. The U.S. Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted paper.

Disclaimer

Neither Air Products and Chemicals, Inc. nor any of its contractors or subcontractors nor the United States Department of Energy, nor any person acting on behalf of either:

1. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

2. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Department of Energy. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Department of Energy.
Thank you
tell me more
www.airproducts.com