Risk Assessment for CO$_2$ Storage in Geological Formations

Moving from Cottage Industry to Industrial Application

Tony Espie, Advisor CO$_2$ Storage
Outline

• Context
• Where have we been
 – In Salah
• What are we doing now?
 – DF1 - 6
• Where do we go from here?
Context

- BP has one CCS project operational (In Salah) and six others under development (DF1 – 3 publicly announced).
- Need to streamline subsurface processes to focus on what needs to be done rather than what would be nice to have.
Where Have We Been?

Risk Assessment for In Salah

- Primary focus on:
 - Capacity
 - Impact on hydrocarbon operation
 - Injectivity

- Secondary focus on:
 - Seal capacity (thick regional seal)
 - Faulting (no faulting observed above reservoir)
 - Well integrity
In Salah Gas Development
Forecast CO₂ Storage Capacity and Times (Years)

- **Block A**: 25%
- **Block B**: 20%
- **Block C**: 26%
- **Block D**: 9%
- **Block E**: 7%
- **Block F**: 13%

Frequency Chart

- Mean = 13.85
- 10,000 Trials
- 20 Outliers

Forecast: Segment A

- 10,000 Trials
- Frequency Chart
- Mean = 13.85
- 20 Outliers

Forecast: Segment C

- 10,000 Trials
- Frequency Chart
- Mean = 12.62
- 10 Outliers
Change in gas saturations over time, resulting from CO2 injection at three locations.
What Are We Doing Now?

Structured process for Risk Assessment:
Australia-NZ Standard for Risk Assessment

- Identification of key risks and event scenarios
- Quantification of risks
- Evaluation of risks (with stakeholder input)
- Process modification to eliminate excess risk
- Monitoring and intervention strategy to manage remaining risk
The Gaps

• Issue is not the workflow but rather the criteria that are used for evaluation
 – E.g. capacity
 – Bulk pore space vs Effective pore space vs seal capacity vs economic capacity ?
 – Bust between capacity and rate
 – Utilisation of lower perm formations challenging
• Risk Assessment
 – Tools and processes for Quantitative Risk Assessment are not sufficiently robust for use in Regulatory processes
 • Look for unacceptable consequences as primary screening criterion in under-performing projects
An Approach to Assessing CCS Projects

• Design to minimise risk
 − Site selection criteria

• Assess risks
 − Develop risk register
 − Model to understand controls on storage and potential downsides of injection rather than attempt to quantitatively predict performance over hundreds of years
 − Test – can we live with consequences?

• Monitor to manage risks
 − Look for early indicators of problems
 − e.g. pressure-mass balance inconsistencies
 − Wellbore integrity
Regional setting: WA sedimentary basins
Structural Framework: Vlaming sub-basin

- Fault-bounded basin
- Shallow water (200m)
- Close proximity to Kwinana refinery
 - 20km offshore
- Thick sedimentary succession
 - >15km sediment
- Identified as a potential storage site by CO2CRC study
Database

- Open file subsurface database available
 - variable quality / density

- 2D seismic grid
 - 9100 line km
 - variable vintage/quality

- 18 exploration wells (1967-1998)
 - variable log suite / quality
 - no discoveries
 - 2 reported oil shows
 - trace gas through drilled section
Stratigraphy

3 potential storage systems (reservoir/seal pair) being assessed:

- **Gage Sandstone / South Perth Shale**
- **Parmelia Group sandstones / shales**
- **Yarragadee Fm (sst) / Otorowiri Fm (shale)**
NW-SE cross-section across Vlaming sub-basin
Evaluating Seal Integrity
Creating Risk Register

<table>
<thead>
<tr>
<th>Risk</th>
<th>Monitoring Data Needed</th>
<th>Mitigation</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface facilities</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Facilities failure : flange leakage | Leak detection
Atmospheric concentration | Protect by minimising flanges on CO2 system,
i) Automatic gas detection system and shutdown system
ii) Integrity inspections / portable detection | Personal exposure limits in facilities |
| Facilities failure : Vessel / pipework failure | Leak detection
Atmospheric concentration | i) Automatic gas detection system and shutdown system
ii) Integrity inspections / portable detection | Personal exposure limits in facilities |
| Compressor failure : seals failure | Leak detection
Atmospheric concentration | Instrument alarms | Personal exposure limits in facilities |
| Pipeline failure : corrosion through carbonic acid formation | Line pressure
Atmospheric concentration | Protect through:
i) 4th stage compressor operating conditions
ii) Dehydration with glycol (malfunction alarms on plant)
iii) Pipeline blowdown for long shutdown period
iv) Integrity management
Remote concentration monitoring | Release modelling required to evaluate implications |
| Wellhead failure : wellhead rupture and uncontrolled release | Surface monitoring | i) Automatic wellhead shutdown system (low pressure trip)
ii) Wellhead downhole check-valve | |
| Metering failure | Calibration of meters | | |
Simulated Pipeline release into North Sea:
4 million tonnes/year for 1 year