Experiences in the Salt Creek Field CO2 Flood

Ken Hendricks
Anadarko Petroleum Corp.

5th Annual Wellbore Integrity Network
May 13-14, 2009
Calgary, Alberta
This presentation contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. Anadarko believes that its expectations are based on reasonable assumptions. No assurance, however, can be given that such expectations will prove to have been correct. A number of factors could cause actual results to differ materially from the projections, anticipated results or other expectations expressed in this presentation. See “Risk Factors” in the company’s 2008 Annual Report on Form 10-K and other public filings and press releases. Anadarko undertakes no obligation to publicly update or revise any forward-looking statements.
Outline

• Field/System Overview

• Challenges
 • Wells
 • Others

• Lessons Learned

• Benefits

• Questions
Anadarko’s Wyoming EOR Assets

- **Fields**
 - Monell
 - Salt Creek
 - Sussex

- **Pipelines**
 - 33 mile, 8”
 - 125 mile, 16”

- **CO₂ Supply**
 - XOM Shute Creek
Salt Creek – Overview

History
- Discovered in 1908
- >4,000 wells drilled
- 1.7 Bbbl of OOIP
- 0.7 Bbbl cum. production
- 10 producing horizons
- Depths range from 22’ to 4,500’
 - Second Wall Creek ~ 1,800’
- Waterflooding began mid-1960s
- CO₂ injection began Jan 2004
 - CO₂ production began May 2004
- >90% located on BLM acreage
- Planned Sequestration of ~40 million tons (700 BCF) of CO₂

Current Rates
- 8,000 b/d from CO₂, (9,500 b/d total)
- 350 MMcf/d CO₂ injection
 - ~125 MMcf/d new CO₂
 - ~225 MMcf/d recycled CO₂
- CO₂-EOR Cumulative > 8 MMBO
Salt Creek Type Log – Wall Creek 1 & 2

Wall Creek 2 (Primary Horizon)
- Salt Creek structure is a large asymmetrical anticline
- Area: 40 sq. miles
- Depth: 1,500 - 2,500’
- Thickness: 130’ grs / 70’ net
- Por / Perm: 19% por / 52 mD
- 39 API; MMP 1,250 psi
- Primary: 1917 – 67
- Waterflood: 1967 – present
- CO2: 2004 – present
WC2 CO₂ Flood

- Oil: 39° API
- MMP: 1,275 psi @ 105°
- Miscible areas on flanks
- Flood Type: (WAG) Water Alternating Gas
- Producers: Flowing wells (against surface backpressure of 200 – 400 psi)
CO$_2$ Flow Process at Salt Creek

PRS Facility: Reduce the CO$_2$ pressure to operating conditions

Purchased CO$_2$ from Pipeline

Recycled CO$_2$ from field

Gather & Compress produced CO$_2$

Separation

CO$_2$, Oil, & Water Production

Production Header

Test

Injection Well

Production Well
~8 MMBOE from Salt Creek CO2 flood
Pre-CO2 Development – What did we have?

- More than 4,000 wells drilled; ~70% prior to 1930
 - ~1,000 well waterflood producing +/- 5,000 b/d; 99.4% water cut
 - High well density with the Second Wall Creek formation developed on ~ 4-acre spacing
 - Limited open-hole log data – Most wells drilled prior to this technology existing
 - Existing production/injection casing not designed for corrosive CO2 service & of questionable integrity
 - Over 3,000 plugged and inactive wells with questionable cement isolation & questionable plugging quality
 - Incomplete well data & numerous unknown wellbores
Well Challenges

• Identification of all existing wellbores
 – Extensive record searches, conventional & unconventional. Difficult because of limited or nonexistent records for numerous wells
 – Magnetic surveys, both aerial and ground
3D Perspective of Magnetic Survey
Well Challenges (cont.)

- Hyper-mature wellbores with minimal to no original cement and questionable wellbore integrity
 - Cement is critical to keep CO2 contained in target reservoir
 - Significant efforts to quantify cement quality, CBLs, temp logs, tracers, etc.
 - Squeeze cementing is very common

- Effective cement blends
 - Presently Type I/II cement is used.
 - Work in low temps < 105 F
 - Available & economic
 - Low permeability (finer grind)
 - Performs well in acid resistance testing and is rated as sulfate resistant
Well Challenges (cont.)

- Effective sealing with high durometer packing/sealing elements
 - High durometer elements unsuitable at Salt Creek, presently 60 - 80 durometer elements are used
- High volume of well work
 - >1200 wells worked over in Phases 1-6
 - 95+% success rate in reactivating plugged wells
- High pore pressure gradients
 - 14 to 18 ppg equivalent
Salt Creek Well Design / Requirements

• Every well is evaluated, make no assumptions of adequacy
• Existing wellbores used when possible – typically extensive work is required
• Zonal isolation required in all wells, including P&A wells

• Basic Well Requirements
 • Pressure integrity within the casing above perforated interval
 • 100' of behind-pipe cement above the WC2 & WC1
• All CO2/Water injected down tubing - internally lined, coated, or fiberglass
• Nickel plated packers used to mitigate potential corrosive effects, and to aid in isolation
• Injectors and producers are equipped identically
• Cement isolation above both the WC1 and WC2 is required to prevent behind pipe fluid movement
 – Properly designed common oilfield cements are effective in carbonic acid solutions
 – CBLs have proven to be effective for evaluation
• Perform well work in advance of CO2 development, all objectives are more attainable in a lower pressure environment
• All wells drill to the WC1 or deeper will be evaluated and worked on as necessary, this includes making sure that all inactive wells are plugged properly. If records are uncertain, rig up and confirm the status of the wellbore. This will mitigate potential wellbore integrity issues
• Casing will be pressure tested. Pressure requirements will vary as individual well reliability requirements increase. This will mitigate potential wellbore integrity issues
• All packers will utilize sealing elements rated no higher than 80 durometer to allow for a better packer seal within the wellbore
• Wellheads will utilize a tubing hanger equipped to handle a back pressure valve, and will be flange connected to the master valve. This expedites well control and improves safety
• Step-rate tests will be performed and are critical for optimizing injection rates and pressures
• Remedial cement work is the most effective way to correct most wellbore integrity problems
• Slimhole completions using fiberglass tubing/casing is a viable option on both existing older wells and newly drilled wells. Fiberglass pipe will be cemented to surface.
Lessons Learned (cont.)

• Well problems can occur. At the first indication of a problem be prepared to utilize one, or more, of the following diagnostic tools:
 – Injector / producer pattern reviews (High level check)
 • Reservoir pressure evaluation
 • Injection-Withdrawal ratios/Pattern balancing
 – Temperature logging (Joule-Thompson effect)
 • Common and useful in identifying both internal and external wellbore problems
 • Fiber Optic Cable can be run in some cases, allowing for fully distributed temperature logs
 – Radioactive tracer logging. Can be performed with both gas and liquid transported tracer material
 • Can also identify internal and external wellbore problems
 • Gas tracer material can be run with CO2
 – Other technologies
 • Noise logs
 • Seismic
 • Interwell Tracers
Other Challenges

- Continued Waterflood Operations concurrent with CO2 Development & Ops
- Significant project activity beyond Second Wall Creek Development
- Challenging Regulatory Environment
 - Environment Assessments
 - Wildlife Stipulations
 - Oversight by both State & Federal Agencies
 - Long permit lead times
 - Changing regulatory requirements
Non-Typical Benefits

• Salt Creek development viewed positively by State and Federal Agencies
 – Vintage plugged and abandoned wells are re-plugged to modern standards, reducing liability
 – Improving viewshed & more aggressive field reclamation
 – New flowlines reduce leak frequency, minimizing spills
 – CO2 sequestratation

• Salt Creek’s brownfield development assists the regulatory agencies in meeting their stated multiple use objective, while minimizing new disturbance
Questions ??

The past …

Today and beyond …