Well Abandonment Practices

IEA GHG Wellbore Integrity Network Meeting
Calgary, May 13, 2009

TNO | Knowledge for business

Tjirk Benedictus
Introduction

• In 2008 TNO was contracted by IEA GHG to conduct a review study into well abandonment practices based on available literature.

• Results are to be published as IEA GHG report.

• Draft results presented here: any feedback is appreciated!
Scope of the study

- Previously abandoned deep oil and gas wells
- Well abandonment techniques
- High order evaluation of abandonment practices, through:
 - Expert opinions (questionnaire)
 - Governing regulatory frameworks
- Suitability for CO₂ storage
 - Overview of state of knowledge on well material degradation
- Risk assessment
- Recommended best practice
Types of wells

- Regarding CO₂ storage, different types of wells need to be distinguished (after Watson & Bachu, 2007):

 - **Future wells**
 - Wells directly related to the storage operations (i.e. CO₂ injection or monitoring wells)
 - Wells penetrating or transecting CO₂ storage reservoirs aiming at reservoirs at deeper levels
 - To be designed and abandoned taking into account CO₂ storage

 - **Existing wells**
 - To be abandoned taking into account CO₂ storage
 - Accessible wells (e.g. operating, shut-in)

 - **Previously abandoned wells**
 - Main risk for well integrity (leakage)
Case study: De Lier (the Netherlands)

Previously presented at the 3rd Wellbore Integrity Network meeting

- Feasibility study to store CO\textsubscript{2} in the depleted gas reservoir of the onshore, stacked De Lier field
- Penetrated by 51 abandoned wells
- Wells are abandoned according to regulations; abandonment did NOT take into account CO\textsubscript{2} storage
- Some wells would need reabandonment
- Consequently, the proposed storage project was discontinued
Case study: Gulf Coast, Texas (USA)

- Suitable geology for CO$_2$ storage, but...

- Extremely high well density (although decreasing with depth): high probability of encountering (abandoned) wells

- No comprehensive database on oil and gas wells ever drilled (especially older wells, i.e. pre-1930s, are lacking): high uncertainty regarding abandoned wells (e.g. location, abandonment status)

- After: Nicot et al., 2006; Nicot, 2008
Plugging techniques

Balanced plug method

Dump Bailer method

Cement squeeze method

Two-plug method

After: Nelson and Guillot, 2006
Historical developments in plugging

- 1922: Patent on Two-plug method by Halliburton, limiting potential mud contamination
- 1928: Multiple cement types became available for plugging
- ~1930: Introduction of centralizers, enabling more uniform cement distribution in wells
- 1940: Introduction of two types of Portland cement and three types of additives
- 1940s: Invention and widespread use of caliper, enabling calculation of the exact quantity of cement
- 1953: Publication of API standards on well cements

- Wells that were abandoned prior to 1953 are often not considered to have effective cement plugs
Abandonment practices

• Results based on a survey/questionnaire presented to approximately 200 experts (at operators, service companies, research institutes, regulatory bodies).

• Only 9 responses from different regions (North America, Europe, Australia)

• Questionnaire subjects comprise:
 • Drilling & completion operations
 • Abandonment regulations
 • Abandonment practices
 • Data availability
Questionnaire: Drilling and completion

• Various steel grades used for casing (e.g., J55, K55, L80, N80, C95, P110, Q125), generally following (API) guidelines on H₂S content, temperature and pressure.

• Common practice to use Cr-13 type steel in corrosive environments

• Primary cement sheath typically present along 30-70% to 70-90% of the wellbore

• 0-10% to 10-30% of wells show initial leakage (i.e. SCP, gas migration), due to casing corrosion/wear, poor cement coverage, improper slurry design, or overpressurization

Well Abandonment Practices

Well Abandonment Questionnaire

Name:
Company:
Region:
Field:
Depth range:
Pressure (MPa) range:

Tjirk Benedictus
Questionnaire: Abandonment regulations

- Regional or national regulations, or (in absence of these) international guidelines (OSPAR, London Convention)

- Balanced plug method is most commonly prescribed

- Minimum number of plugs ranges from 1 to 3

- Minimum plug length ranges from 8 to 100 m

- Plug testing generally involves either weight or pressure test

- Requirements for corrosive environments are rarely in place
Questionnaire: Abandonment practice

- Majority of operators has not been taking into account potential second life applications when abandoning.

- However, some operators recently started to evaluate field’s value for future purposes prior to abandonment.

- Company practices closely reflect governing regulations; more stringent measures (e.g. longer plug lengths, advanced materials) may be applied, especially in corrosive environments.
Questionnaire: Data availability

- Majority of respondents (a single exception) indicated that for 90-100% of the wells data is available on:
 - Well location (coordinates)
 - Present well status
 - Well configuration (i.e. cased depths, top of cement, plug lengths, materials applied)
Well Abandonment Regulations

• Literature research of well abandonment requirements in international regulations and a selected number of countries/states with petroleum history, including:
 • Australia
 • Canada
 • China
 • Europe (e.g. Denmark, Netherlands, Norway, UK)
 • Japan
 • USA (Alaska, California, Texas)

• Data obtained of plug lengths and position requirements used in:
 • the transition zone from uncased to cased sections
 • reservoir (uncased) section
 • perforated cased sections
Selection of minimum plug requirements

• Transition zone from uncased to cased sections;
 • Europe; 50-100 m, except UK; 30 m
 • International; 30-60 m, except Canada; 15 m depending on formation

• Reservoir (uncased) section
 • Europe and International; 50-100 m, except UK and Canada; 30 m

• Perforated cased sections
 • Europe; 50-100 m, except UK; 30 m
 • International; 30-60 m, except Canada; 80 m

Note: plug lengths in feet have been converted into meters and rounded off
Minimum plug lengths per country/state
Transition zone from uncased to cased sections

USA & Canada: 100 m
Europe: 100 m
Australia: 100 m
Asia: 100 m

Legend:
- Length above casing shoe (m)
- Length below casing shoe (m)
Remarks on review of abandonment regulations

- Assessment of the regulatory framework provides a first order proxy for initial identification of abandonment practices only

- Cement plug is compulsory in all evaluated regulatory documents

- Main differences involve plug requirements (lengths) at the level of the deepest casing shoe

- The application of mechanical plugs often require additional cementing (exact requirements differ significantly among regulations)

Note that reviewed documents often involve unofficial translations of the original documents from the native languages to English
Impact of CO$_2$ on wellbore integrity: an overview

• Cement degradation is considered to be diffusion-controlled

• Function of e.g. pH, T, P and salinity, but also on curing conditions, experimental setup (static vs. flowing, supercritical vs. dissolved CO$_2$)

• Extrapolating published experimental data according to Fick’s Law of diffusion ($d = C \cdot t^{1/2}$), shows divergent results: Time (t) required to degrade $d = 25$ mm of cement, ranges from 15 days to over 724,000 year (under different conditions)
Impact of CO₂ on wellbore integrity: an overview

• Limiting factors apply translating experimental results to field cases, e.g.:

 • Limited reaction surface in the field (taken into account by some authors)

 • Limited availability of free water (especially for some depleted gas fields)

 • High salinity (especially abundance of Ca²⁺) may reduce degradation or even lead to self-healing through calcite precipitation
Impact of CO$_2$ on wellbore integrity: an overview

- **Steel corrosion** is a linear process

- Function of pH, temperature, salinity and partial CO$_2$ pressure

- Published experimental results show corrosion rates in the order of mm’s per year

- Under favorable conditions (T>60-100°C; pH>5) siderite (FeCO$_3$) precipitation can retard corrosion, forming a (partially) protective layer

- In general, higher grade steel is more susceptible to corrosion
Impact of CO₂ on wellbore integrity: an overview

- Mechanical deformation
 - Reservoir decompaction due to CO₂ injection: strain incompatibility at cement-steel interface may cause debonding, and tensile cracks in the cement sheath
 - Shear deformation at the interface between reservoir and cap rock may damage the wellbore
 - Micro-fractures and micro-annuli may arise from:
 - Poor cement job (incl. cement shrinkage)
 - Temperature and/or pressure changes or cycles
Impact of CO$_2$ on wellbore integrity: an overview

- Interaction of casing corrosion and cement degradation along micro annuli

- Experimental work on a cement-steel sample in CO$_2$-brine (incl. Ca$^{2+}$) by Carey et al. (2008) shows:
 - No significant loss of mass of both steel and cement
 - Precipitation of siderite (FeCO$_3$) on the steel surface
 - Limited penetration of CO$_2$ in cement consistent with 1-D diffusion
Impact of CO$_2$ on wellbore integrity: an overview

- Interaction of chemical, mechanical and physical processes
 - Huerta et al. (2008) and Lécolier et al. (2008) report self-healing at cement-casing interface in lab experiments
 - At increasing confining stress, mechanical weakening results in rapid closure of fractures
 - Lécolier et al. (2008) report decreasing permeability and flow rates
Recommended best practice

• Future wells can be designed, drilled completed and abandoned taking into account any CO₂ storage reservoirs

• Suitability of existing wells for CO₂ storage needs to be evaluated
 - Accessible wells may require workover operations to be able to adequately isolate CO₂ storage reservoirs; techno-economical considerations determine the feasibility
 - Abandoned wells generally are not accessible. Especially older wells may pose threats to CO₂ storage. Furthermore, timing and stringency of global abandonment regulations varies considerably
Managing previously abandoned wells

• Lab experiments show cement degradation rates extrapolating to a maximum of 12.4 m in 10,000 years under severe T conditions, i.e. 204°C, 69 bar (in practice penetration is likely to be less)

• Prescribed cement plug lengths range from 15 to 100 m

• Quality and mechanical integrity of cement plug and sheath seems to be of more significance than chemical degradation:
 • Fractures or annular pathways in or along the cement will likely govern the permeability of the wellbore system

• Supported by investigations of downhole cement samples by Carey et al. (2007) and Crow et al. (2008):
 • Diffusion-based degradation of cement is limited
 • CO₂ migration was observed along cement-steel and cement-formation interfaces
Risk Management: assessment

- When considering long-term CO₂ storage, the current state of wells involved needs to be confidently assessed, including previously abandoned wells
 - Evaluation of abandonment configuration with respect to second life application
 - Evaluation of current state of materials and placement, extrapolating from data gathered prior to abandonment
Risk assessment methodologies

- Qualitative RA → FEP (Feature, Event, Process) analysis to identify site-specific CO₂ storage related hazards (e.g. TNO CASSIF, Quintessa)

- Quantitative RA
 - Deterministic (applicable to small numbers of wells)
 - Probabilistic (applicable to large sets of wells; e.g. OXAND methodology)

- Semi-quantitative: e.g. data mining
Risk Management: monitoring

• Monitoring well integrity as part of the entire suite of monitoring techniques employed on a storage site

• Monitoring abandoned (inaccessible) wells will be limited

• Potential techniques involve:
 • (near-)surface measurements (soil gas/fluxes, groundwater chemistry)
 • remote sensing
 • geophysical methods (e.g. seismic)

• In order to enhance discrimination between natural and injected CO₂, tracers could be added to the injected CO₂
Risk Management: remediation

- Remediation of abandoned wells requires re-entering and re-abandonment and is extremely costly and generally unfeasible.

- The ultimate measure to mitigate leaking storage reservoirs would be releasing pressure by venting CO₂ into the atmosphere.

- Obviously costly remediation or venting CO₂ should be prevented, initially by performing a comprehensive assessment of the wells involved prior to CO₂ injection.
Thank you!

Any suggestions, comments or input regarding the Well Abandonment report would be appreciated.

tjirk.benedictus@tno.nl