This website will offer limited functionality in this browser. We only support the recent versions of major browsers like Chrome, Firefox, Safari, and Edge.

Technology Collaboration Programme by IEA

Biorefineries with CCS

Ilkka Hannula, Kristian Melin

Citation: IEAGHG, "Biorefineries with CCS ", 2021-01, March 2021.

Download The Full Publication Now

Publication Overview

The aim of this study is to provide a techno-economic assessment of biorefinery concepts with and without carbon capture and storage (CCS) as well as a comparative assessment of 1st generation and 2nd generation biorefineries. The results of this study will be of interest to developers of biorefinery and CCS projects and policy makers.

Publication Summary

  • The cost of adding CCS on the high-concentration streams of biorefineries varies between 22and 24 $/tCO₂. If CCS is extended also to flue gas streams, the cost of CCS varies between 27and 66 $/tCO₂. The wider range of cost is explained by differences between biorefineries inthe share of CO₂ that needs to be captured from low-concentration streams.
  • The lowest cost of CCS is achieved with gasification-based configurations using base caseCCS design (22 $/tCO₂) followed closely by ethanol plants with base case CCS design (24-25$/tCO₂).
  • Several of the cost estimates are developed for first-of-a-kind commercial plants and contain alot of uncertainty as they are derived from a small handful of demonstration projects. Costreductions could be achieved over the coming decades through learning from thesetechnologies at relevant scale.
  • Biorefineries with CCS show potential for negative emissions. First generation corn ethanolplants with CCS can only produce carbon negative fuels if natural gas inputs are switched to alow-carbon energy source. For second generation biorefineries with CCS, based on woodybiomass, emissions range between -59 gCO₂eq/MJ and -164 gCO₂eq/MJ. The deepestemissions reductions in comparison to the fossil reference are associated with secondgeneration wheat straw plants with CCS, which can achieve -274 gCO₂eq/MJ in the maximumcapture configuration.
  • Biorefineries with CCS seem very attractive, especially for decarbonising the hard-to-abatetransport sector. On the other hand, the cost of biofuel is currently too high to compete withpetroleum fuels and out of the examined configurations only two have currently beendemonstrated at commercial scale.
  • Recommendations for further work include:
  • Implementation of large-scale demonstration projects in order to reduce risk andincrease investor confidence.
  • More data should be made available from projects in order to refine the techno-economic assessment of biorefineries with CCS and reduce uncertainties.

Download Publication

Access the complete publication in PDF format.

Download Now

Related Publications

View similar publications.

View All Publications
Technical Report

Market Models for CCUS/CDR – A Global Screening

  • 10 September 2025
  • Capture

This report provides a key pillar to interested parties including policy makers, regulators, and the technical carbon capture, utilisation and storage (CCUS) / carbon dioxide removal (CDR) community on potential successful market strategies, including their pros and cons and their suitability for dierent economic and political realities, which may lead to the fast development of an efficient, safe, and accepted CCUS/CDR market sector.

Technical Report

The Value of Direct Air Carbon Capture and Storage (DACCS)

  • 4 September 2025
  • Capture

The aim of this study is to evaluate the value of direct air capture and storage (DACCS) in the energy transition (down to the regional level), accounting for key factors, including carbon removal eiciency, timeliness, durability, land footprint and techno-economic performance.

Technical Report

Power CCS: Potential for cost reductions and improvements

  • 5 August 2024
  • Capture
  • Costs of CCUS

CCS, in the context of power CCS technologies, will be an essential component of the portfolio of technologies required to reach net-zero emissions in the power sector. This study explores the potential to reduce the cost and accelerate the uptake of power CCS technologies.

Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Review

7th Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO₂ from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Technical Review

9th HTSLCN Meeting Report

  • 21 September 2023
  • Capture
  • Event Proceedings

The 9th High Temperature Solid Looping Cycles Network (HTSLCN) Meeting took place from 14th to 15th March 2023 at Palazzo Farnese in Piacenza, Italy, hosted by the CLEANKER consortium. 82 attendees enjoyed a two-day programme with a total of 28 presentations, the official closure of the CLEANKER project with a visit to the pilot plant, a relaxing dinner and a guided tour in the museum of Palazzo Farnese about the millennial history of the city of Piacenza and its territory, from the preRoman age to the XX century.

Our most recent publications

Our authoritative, peer-reviewed publications cover topics that include carbon capture, transport, storage, monitoring, regulation, and more.

View All Publications
Technical Report

Market Models for CCUS/CDR – A Global Screening

  • 10 September 2025
  • Capture

This report provides a key pillar to interested parties including policy makers, regulators, and the technical carbon capture, utilisation and storage (CCUS) / carbon dioxide removal (CDR) community on potential successful market strategies, including their pros and cons and their suitability for dierent economic and political realities, which may lead to the fast development of an efficient, safe, and accepted CCUS/CDR market sector.

Technical Report

CO2 Flow Metering Technologies

  • 4 September 2025
  • Policy & Regulation
  • Transport

The main objective of this study is to raise awareness of the relevance, state of the art, challenges and opportunities of flow metering for carbon capture, utilisation and storage (CCUS). Flow metering of CO2 streams will be critical in supporting trade, protecting consumers, ensuring confidence, facilitating taxation, and meeting CO2 reduction goals and treaty obligations.

Technical Report

The Value of Direct Air Carbon Capture and Storage (DACCS)

  • 4 September 2025
  • Capture

The aim of this study is to evaluate the value of direct air capture and storage (DACCS) in the energy transition (down to the regional level), accounting for key factors, including carbon removal eiciency, timeliness, durability, land footprint and techno-economic performance.

Get the latest CCS news and insights

Get essential news and updates from the CCS sector and the IEAGHG by email.

Can’t find what you are looking for?

Whatever you would like to know, our dedicated team of experts is here to help you. Just drop us an email and we will get back to you as soon as we can.

Contact Us Now