Publications Library

Access the latest IEAGHG publications. Our authoritative peer-reviewed publications cover a wide range of topics including carbon capture, transport, storage, monitoring, regulation, and more.

steel long pipes in crude oil factory during sunset

Recent Publications

View All Publications
Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Methologies and Technologies for Mitigation

  • 1 December 2023
  • Industry Insights

The driver behind this study is to develop a report built on the on the previous IEAGHG report on methods of leakage mitigation (2007/11). The proposed study should focus on current mitigation and remediation methods that may be applied or considered in site specific conditions in the event of unpredicted CO2 migration. Each geological storage site will have an adaptive site specific monitoring plan, based on a risk assessment. Detection of a significant irregularity may involve supplementing the monitoring program, in order to detect a possible leak and if necessary engaging mitigation measures.

Technical Review

6th International Workshop on Offshore Geologic CO2 Storage

  • 1 December 2023
  • Event Proceedings
  • Storage

The 6th International Workshop on Offshore Geologic CO2 Storage was held in Aberdeen on 13-14 September. Organised with the University of Texas and hosted by the University of Aberdeen. The loca on was very appropriate as we were co-hosted and sponsored by Storegga who leads the Acorn project nearby in Scotland. This project had been recently announced by the UK government as a Track 2 Cluster project. This 6th workshop had 190 delegates (60 in-person and 130 virtual) from 35 countries, with a good mix of industry, researchers and regulators.

Technical Review

Monitoring Network Meeting Report

  • 1 December 2023
  • Event Proceedings
  • Storage

The IEAGHG Monitoring Network aims to assess new technologies and techniques in the monitoring of CO2 storage, determine the limitations, accuracy and applicability of monitoring techniques, disseminate information from research and pilot storage projects around the world, develop extensive monitoring guidelines for the different sub-categories of geological storage; oil and gas fields, unmineable coal seams, and saline aquifers covering the differing conditions and reservoir properties encountered globally as well as to engage with relevant regulatory bodies.

Technical Report

International Standards and Testing for Novel Carbonaceous Building Materials

  • 1 December 2023
  • Policy & Regulation
  • Utilisation

Over 4 billion tonnes of cement are produced each year, equating to approximately 8% of global anthropogenic CO2 emissions, and this industry will continue to grow with the expansion of the built environment at a time that emissions need to be reduced. The utilisation or reduction of CO2 within cement, concrete and building materials could be a valuable way to contribute to emissions reductions in the sector , but there are several barriers, including the current state of standards, regulations and policies. This study will provide useful information for the technical and research community, the CCUS industry, the construction industry, and policymakers, providing an unbiased and non-prescriptive evaluation of international standards and testing relevant to novel carbonaceous building materials to address some of those barriers. The market potential for CO2 utilisation processes in the construction industry is also investigated, and the methods for certifying and measuring embodied carbon content of carbonated building materials is evaluated and the challenges therein.

Technical Report

Components of CCS Infrastructure – Interim CO2 Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO2 storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO2 storage site project developers, operators, financiers and regulators.

Technical Review

Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO2 from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Capture Publications

Explore the latest developments in carbon capture technology.

View All Capture Publications
Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Review

9th HTSLCN Meeting Report

  • 21 September 2023
  • Capture
  • Event Proceedings

The 9th High Temperature Solid Looping Cycles Network (HTSLCN) Meeting took place from 14th to 15th March 2023 at Palazzo Farnese in Piacenza, Italy, hosted by the CLEANKER consortium. 82 attendees enjoyed a two-day programme with a total of 28 presentations, the official closure of the CLEANKER project with a visit to the pilot plant, a relaxing dinner and a guided tour in the museum of Palazzo Farnese about the millennial history of the city of Piacenza and its territory, from the preRoman age to the XX century.

Carbon Dioxide Removal (CDR) Workshop, Bergen, Norway, 28th June 2022

  • 5 August 2022
  • Capture
  • Event Proceedings

The aim of the workshop was to provide members and other stakeholders with an update on the status of CDR, identify crucial knowledge gaps and the mechanisms to resolve them, and find possible cooperation/collaboration opportunities.

Technical Report

Blue Hydrogen: Beyond the Plant Gate

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to review the comparative analysis of blue hydrogen production (that is hydrogen derived from fossil fuels and associated CCS) technologies from oil and oil-based feedstocks as well as the supply chain implication. Further, this study includes techno-economic and life cycle assessments of different technology production configurations in regions that have access to oil resources and potential for the deployment of CCS infrastructure at scale.

Technical Report

Low-Carbon Hydrogen from Natural Gas: Global Roadmap

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to conduct a techno-economic and environmental assessment of the production of natural gas-based hydrogen with accompanying carbon capture and storage (CCS) technology. Further, the purpose of this study is to enrich knowledge and compare the deployment of steam methane reforming (SMR), electrified SMR (E-SMR), autothermal reforming (ATR), and partial oxidation (POX) with CCS in the Netherlands. The findings of this study will be of interest to policy makers, industrial emitters, as well as technology developers.

Technical Report

Start-up and Shutdown Protocol for Natural Gas-fired Power Stations with CO2 Capture

  • 1 August 2022
  • Capture

In modern power grids, a power plant with CO2 capture will be required to operate as a low-carbon, flexible, dispatchable power generator. A recent IEAGHG study showed it is possible to achieve net-zero CO2 emissions from coal-fired and gas-fired power generation by employing higher capture rates and, in the case of coal-fired generation, by employing a mix of capture rates and biomass.

Technical Report

Defining the Value of Carbon Capture, Utilisation and Storage for a Low-Carbon Future

  • 1 August 2022
  • Capture
  • Utilisation

A key objective of the study was to explore the concept of ‘value’, when applied to a technology deployed in a low-carbon energy system. CCUS is an available mitigation option to support energy transitions and has been highlighted by global IAMs as a necessary technology to limit anthropogenic warming to well below 2°C. Despite this, there continues to be dissent among academics, business leaders and policymakers regarding the role CCUS can or should play in a low-carbon future. This opposition appears to stem not only from a narrow and incomplete focus on cost, and the perception that CCUS is a high-cost mitigation option under all circumstances, but also a failure to recognise the value of CCUS from other perspectives, such as human, social and environmental, to support the energy transition to net zero. As a result, a wider, deeper, and multi-disciplinary review of the ‘value’ of CCUS is explored. Recent literature spanning sector-specific techno-economic models, global and regional IAMs, and social studies to explore the diverse value of CCUS is reviewed. Results from Princeton University’s Net-Zero America study are summarised, where five alternate modelled pathways to net-zero emissions in the United States provided an exceptional level of sectoral, temporal and spatial granularity to highlight the value of CCUS in these pathways. Finally, a semi-quantitative, 2×2 decision framework was introduced to help policymakers screen the relative competitiveness of CCUS as a mitigation option across multiple domains. This framework was applied across a number of case studies, including the United States, the UK, Indonesia, Australia and Japan, to highlight under what circumstances CCUS might prove to be a valuable mitigation option to help these jurisdictions achieve time-bound mitigation goals.

Technical Report

Feasibility Study on Achieving Deep Decarbonization in Worldwide Fertilizer Production

  • 1 March 2022
  • Capture

This study investigated the life-cycle environmental footprint of nitrogen fertiliser production, with and without CO2 capture, in four different regions: the United Kingdom; Norway; Saudi Arabia; and the United States. The goal was to demonstrate how deep decarbonisation of fertiliser production could be achieved in each of these regions and compare the differences between them. Fertiliser production is an important element in the global food production chain and is key to securing sustenance for the growing global population. This is expected to increase to 10 billion by 20501 and consequently fertiliser production, which currently accounts for about 1.5% of global greenhouse gas emissions2, will continue to be essential.

Storage Publications

Unearth the latest developments in geological CO2 storage.

View All Storage Publications
Technical Review

Monitoring Network Meeting Report

  • 1 December 2023
  • Event Proceedings
  • Storage

The IEAGHG Monitoring Network aims to assess new technologies and techniques in the monitoring of CO2 storage, determine the limitations, accuracy and applicability of monitoring techniques, disseminate information from research and pilot storage projects around the world, develop extensive monitoring guidelines for the different sub-categories of geological storage; oil and gas fields, unmineable coal seams, and saline aquifers covering the differing conditions and reservoir properties encountered globally as well as to engage with relevant regulatory bodies.

Technical Review

6th International Workshop on Offshore Geologic CO2 Storage

  • 1 December 2023
  • Event Proceedings
  • Storage

The 6th International Workshop on Offshore Geologic CO2 Storage was held in Aberdeen on 13-14 September. Organised with the University of Texas and hosted by the University of Aberdeen. The loca on was very appropriate as we were co-hosted and sponsored by Storegga who leads the Acorn project nearby in Scotland. This project had been recently announced by the UK government as a Track 2 Cluster project. This 6th workshop had 190 delegates (60 in-person and 130 virtual) from 35 countries, with a good mix of industry, researchers and regulators.

Technical Report

Components of CCS Infrastructure – Interim CO2 Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO2 storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO2 storage site project developers, operators, financiers and regulators.

Technical Report

Classification of Total Storage Resources and Storage Coefficients

  • 1 November 2023
  • Storage

The CO2 Storage Resources Management System (SRMS) is a classification scheme to quantify, classify and categorise CO2 storage resources. It comprises ‘total storage resources’, which are understood as maximum (theoretical) storage quantities that could ever be accommodated in the subsurface. Comprising maximum mobile CO2 in structural/stratigraphic traps, maximum residually trapped CO2 in other parts of the formation, and maximum dissolution potential in remaining formation water. ‘Storable quantities’ are understood as accessible from one or several current or future projects. It is the sum of capacity, contingent and prospective resources. The concept of ‘storage coefficient’ ‘E’ is the ratio of the subsurface volume of CO2 storable quantities to either the total storage resources or the pore volume. The calculation is arguably complicated as E is impacted by lithological heterogeneity, trapping structures, boundary conditions, injection rates, well spacing, fluid properties etc. Due to its complexity, there is much controversy on how to estimate E, with some arguing it should not be used at all and that reservoir simulation is a better path. However, estimates for E are used in most regional mapping studies. This study explores storage resource classification schemes and their evolution in understanding, the calculation of storage resources and the storage co-efficient. This is explored in terms of calculating E for CO2 storage sites, through flow modelling and analytical solutions.

Technical Review

Risk Management Network Meeting Report

  • 29 September 2023
  • Event Proceedings
  • Storage

The Risk Management Network meeting was held as an in-person event with a particular focus on the risk of wells (particularly legacy wells) in a CCS project, looking at the topic from basin scale through to detailed characterisation of well materials and monitoring. Attended by over 75 delegates from 15 countries, the two day meeting was held at Heriot-Watt University in Edinburgh, UK. It was kicked off by a welcome reception in the Lyell Centre (home to both BGS and the Institute for GeoEnergy Engineering) and was followed by a field excursion to explore the geological history of Arthur’s Seat in Edinburgh and a tour of a very new distillery located in an old train station within stone’s throw of Holyrood Park.

Technical Report

Prospective Integration of Geothermal Energy with Carbon Capture and Storage

  • 23 August 2023
  • Storage
  • Utilisation

The aim of the study is to provide a dispassionate review and overview of scenarios where geothermal energy and CO2 utilisation and storage technologies can be combined for mutual benefit and contribute to Net Zero targets. Sourced from a rich body of literature from global research institutes and some demonstration projects many of the concepts identified have been conceptualised over the past 20 years and are still in the early concept stage. These concepts have been categorised, described and evaluated using qualitative and quantitative methods. And a map based screening exercise useful for initial evaluation of areas suitable for combined synergies has been undertaken.

5th International Workshop on Offshore Geologic CO2 Storage

  • 17 October 2022
  • Event Proceedings
  • Storage

This 5th Workshop on Offshore Geologic CO<sub>2</sub> Storage covered multiple subjects, including: summary of multiple CCS projects worldwide, subsurface considerations for depleted hydrocarbon fields, containment/ pressure management, and saline formations to store CO<sub>2</sub>, as well as considerations on regulating offshore CCS, monitoring offshore CCS projects, CO<sub>2</sub> shipping and infrastructure for CO<sub>2</sub>. Importantly, this is the first hybrid in-person and virtual workshop, which represents a milestone to bring this knowledge sharing to multiple people interested on CCS worldwide

Technical Report

Applying ISO Standards to Geologic Storage and EOR Projects

  • 1 September 2022
  • Policy & Regulation
  • Storage

The work aims to summarise and synthesise the two ISO Standards relevant to the geological storage of CO2: – ISO 27914:2017 (‘Carbon dioxide capture, transportation and geological storage – Geological storage’) and ISO 27916:2019 (‘Carbon dioxide capture, transportation and geological storage – Carbon dioxide storage using enhanced oil recovery (CO2-EOR)’) – to provide a high-level understanding of the content into an easily digestible format. By comparison with international regulatory frameworks, and providing case studies of how applicable the standards are to real CO2 storage projects, the study provides a comprehensive overview and concludes on the usefulness of the documents in supporting the implementation of CCUS projects. For the purposes of this overview, the standards will hereafter be referred to as ISO 27914 and ISO 27916

IEAGHG Risk Management Network – Webinar & Virtual Discussion: The Road to CCS Project Permitting

  • 31 March 2022
  • Event Proceedings
  • Storage

On Tuesday 18<sup>th</sup> January 2022, the IEAGHG Risk Management Network held a webinar which aimed to be a roundtable presentation of CCS / CCUS (carbon capture and storage / carbon capture, utilisation and storage) project operator experience, with risk management, during the permitting process.  This webinar heard from panellists on the Northern Lights project, the Porthos project, California experiences with permitting and Oxy’s recent project experiences. The webinar attracted an audience of 138 in addition to 8 panellists and 2 IEAGHG staff.

Transport Publications

Uncover essential insights into the safe transport of CO2 at scale.

View All Transport Publications
Technical Report

Components of CCS Infrastructure – Interim CO2 Holding Options

  • 27 November 2023
  • Storage
  • Transport

This work, undertaken on behalf of IEAGHG by TNO and SINTEF, provides an overview of temporary / interim CO2 storage, or ‘holding’, options (also called buffers) and investigates the role of buffer storage and its potential to create flexible and robust carbon capture and storage (CCS) chains. The report looks at current and emerging buffer technologies, conducts simulations to demonstrate the temporary storage required for given flow-rate scenarios and discusses the impact of buffer capacity on transport costs. In the report, the storage requested in the chain for normal operation is presented as " temporary storage" and storage to give buffer capacity is presented as " buffer storage". This report has focussed on buffering at the emitter site. The results of this study will benefit CO2 storage site project developers, operators, financiers and regulators.

Technical Report

The Status and Challenges of CO2 Shipping Infrastructures

  • 1 July 2020
  • Transport

Large-scale CO2 storage will entail substantial transportation of CO2 from either point-sources or hub collection points to geological formations capable of storing thousands of tonnes of CO2 in supercritical form. In many parts of the world the most suitable storage options for large-scale capacity will be in offshore formations such as the North Sea. Consequently, it is important to build an understanding of the most suitable techno-economic solutions for the trans-shipment of CO2 from shore facilities to offshore storage locations. This study has explored a series of options to gain a more detailed comparison of shipping CO2 either directly by sea tanker to a storage site, or via an intermediate stage, to a shore facility in closer proximity to a storage site prior to transfer via pipeline. These options have also been compared to direct transfer via pipeline.

Technical Report

Re-Use of Oil & Gas Facilities for CO2 Transport and Storage

  • 22 June 2018
  • Storage
  • Transport

Our recent study ‘Case Studies of CO2 Storage in Depleted Oil and Gas Fields’ (2017-01) concluded that CO2 storage in depleted fields would not only be viable with potentially lower risk but could also be relatively cost effective, providing important intermediate-scale storage resources. The report highlighted that re-using an O&G fields would be beneficial as “there would likely be cost savings over saline aquifer sites, particularly in the characterisation stages (where there is the advantage of production history and proved hydrocarbon retention to reduce uncertainty in containment and capacity)”.

Technical Review

Ethane and CO2 shipping

  • 1 March 2017
  • Transport

The study is a first stage assessment of a novel concept of transporting ethane from the USA in dedicated maritime carriers to Europe, which are modified from standard designs to be equipped to carry both ethane and CO<sub>2</sub>, so that CO<sub>2</sub> can be transported back (back hauled) to the USA for use in CO2-EOR operations.

Technical Report

Operational Flexibility of CO2 Transport and Storage

  • 1 March 2016
  • Storage
  • Transport

This study has reviewed different transport and storage scenarios to reflect the range of full-scale commercial operations. In addition to a wide ranging literature review a survey of industrial, utility, pipeline and CO<sub>2</sub>-EOR operators was also conducted to obtain their insights of CO<sub>2</sub> transport and storage. Owing to the sensitivity of these commercial operations it has not been possible to attribute background information to either individuals or their companies. Anonymity has not prevented the inclusion of real world data on exhaust gas composition from different sources including power generation (coal and natural gas), oil refining, gas processing, cement, hydrogen production, and ethanol production. It also includes background information on actual CO<sub>2</sub> pipeline operation, including network hubs, and CO<sub>2</sub> CO<sub>2</sub>-EOR experience in the United States. Experience from different industrial scale injection projects such as Sleipner, Snøhvit and In Salah, has been included. The study has investigated how flexible operation affects CO<sub>2</sub> storage and the measures adopted to accommodate intermittent supply. There are a series of prioritized recommendations based on the gaps in knowledge.

Technical Report

Evaluation and analysis of the performance of dehydration units for CO2 capture

  • 1 April 2014
  • Capture
  • Transport

The purpose of the study is to examine the characteristics of the various dehydration processes and the way they can be best integrated into the CCS system. Moisture in CO<sub>2</sub> can lead to corrosion and hydrate formation. It is necessary to dehydrate CO<sub>2</sub> streams prior to transporting the product in carbon steel pipelines. Several different types of CO<sub>2</sub> capture processes exist. The type selected for use is dependent upon the basic type of combustion process in operation, e.g. coal or natural gas. The CO<sub>2</sub> produced by the various combustion and associated capture processes is of different quality, containing different inerts and impurities, with varying compositions and conditions. The dehydration process can be significantly affected by these differences; it was therefore necessary to consider the different types of capture process separately within this study.

Technical Report

CO2 Pipeline Infrastructure

  • 1 December 2013
  • Transport

The deliverables for this study consist of a reference manual, database, interactive web tool and webinar. The reference manual highlights key design, construction, operational and regulatory learnings. A database, containing more than 100 data elements, complements the reference manual

Technical Review

Development of a Global CO2 Pipeline Infrastructure

  • 1 August 2010
  • Transport

Projections of the scale on which CCS needs to be deployed to meet targets for CO2 emissions reductions indicate that a massive CO2 pipeline infrastructure will be required. To date CCS systems have tended to be based on dedicated pipelines connecting source to sink although some studies of regional CO2 pipeline infrastructure requirements have been carried out. The purpose of this study is to examine the wider issues including design, financing, economics and regional differences.

Technical Report

Upgraded calculator for CO2 pipeline systems

  • 1 March 2009
  • Costs of CCUS
  • Transport

A contract to develop and upgrade the original Woodhill program and the network program was awarded to Gastec UK/AMEC who had already produced the new network design program. After obtaining the original code from Woodhill-Frontier options were examined and it was felt that as both programs were Excel-based it would be simplest to amalgamate them into one program using the original Woodhill interface where possible.The possibility of adding a graphical map-based interface for the distributed collection network was investigated as an additional option but although possible the necessary licence for commercial use was found to be too costly. It was on this basis that GastecUK/AMEC proceeded with the development of the upgraded calculator.

Technical Report

Distributed Collection of CO2

  • 1 September 2007
  • Capture
  • Transport

This study examines the design issues and costs of collecting CO2 captured from multiple distributed sources down to quantities of 5000 tpa. It includes a spreadsheet model for sizing pipelines in a branched collection network with multiple pressure levels. This model also estimates overall collection costs including those for compression using unit costs for construction in the UK.

Utilisation Publications

Explore how we can make the most out of our emissions.

View All Utilisation Publications
Technical Report

International Standards and Testing for Novel Carbonaceous Building Materials

  • 1 December 2023
  • Policy & Regulation
  • Utilisation

Over 4 billion tonnes of cement are produced each year, equating to approximately 8% of global anthropogenic CO2 emissions, and this industry will continue to grow with the expansion of the built environment at a time that emissions need to be reduced. The utilisation or reduction of CO2 within cement, concrete and building materials could be a valuable way to contribute to emissions reductions in the sector , but there are several barriers, including the current state of standards, regulations and policies. This study will provide useful information for the technical and research community, the CCUS industry, the construction industry, and policymakers, providing an unbiased and non-prescriptive evaluation of international standards and testing relevant to novel carbonaceous building materials to address some of those barriers. The market potential for CO2 utilisation processes in the construction industry is also investigated, and the methods for certifying and measuring embodied carbon content of carbonated building materials is evaluated and the challenges therein.

Technical Report

Prospective Integration of Geothermal Energy with Carbon Capture and Storage

  • 23 August 2023
  • Storage
  • Utilisation

The aim of the study is to provide a dispassionate review and overview of scenarios where geothermal energy and CO2 utilisation and storage technologies can be combined for mutual benefit and contribute to Net Zero targets. Sourced from a rich body of literature from global research institutes and some demonstration projects many of the concepts identified have been conceptualised over the past 20 years and are still in the early concept stage. These concepts have been categorised, described and evaluated using qualitative and quantitative methods. And a map based screening exercise useful for initial evaluation of areas suitable for combined synergies has been undertaken.

Technical Report

Defining the Value of Carbon Capture, Utilisation and Storage for a Low-Carbon Future

  • 1 August 2022
  • Capture
  • Utilisation

A key objective of the study was to explore the concept of ‘value’, when applied to a technology deployed in a low-carbon energy system. CCUS is an available mitigation option to support energy transitions and has been highlighted by global IAMs as a necessary technology to limit anthropogenic warming to well below 2°C. Despite this, there continues to be dissent among academics, business leaders and policymakers regarding the role CCUS can or should play in a low-carbon future. This opposition appears to stem not only from a narrow and incomplete focus on cost, and the perception that CCUS is a high-cost mitigation option under all circumstances, but also a failure to recognise the value of CCUS from other perspectives, such as human, social and environmental, to support the energy transition to net zero. As a result, a wider, deeper, and multi-disciplinary review of the ‘value’ of CCUS is explored. Recent literature spanning sector-specific techno-economic models, global and regional IAMs, and social studies to explore the diverse value of CCUS is reviewed. Results from Princeton University’s Net-Zero America study are summarised, where five alternate modelled pathways to net-zero emissions in the United States provided an exceptional level of sectoral, temporal and spatial granularity to highlight the value of CCUS in these pathways. Finally, a semi-quantitative, 2×2 decision framework was introduced to help policymakers screen the relative competitiveness of CCUS as a mitigation option across multiple domains. This framework was applied across a number of case studies, including the United States, the UK, Indonesia, Australia and Japan, to highlight under what circumstances CCUS might prove to be a valuable mitigation option to help these jurisdictions achieve time-bound mitigation goals.

Technical Report

Mineral Carbonation usig Mine Tailings – A Strategic Overview of Potential and Opportunities

  • 1 July 2022
  • Utilisation

The aim of this review is to evaluate the techno-economic viability of AMC, and the comparative maturity of the technology, based on publicly available information. This report is primarily concerned with magnesium-silicate rich mine tailings and ex situ processing to induce carbonation suitably reactive rock. Magnesium silicate rocks can potentially offer significant volumes of material for CO2 capture compared with calcium-based materials

Technical Report

From Carbon Dioxide to Building Materials – Improving Process Efficiency

  • 1 March 2022
  • Utilisation

IEAGHG commissioned a study to investigate how captured CO2 can be used in building materials. It also explored the processes that are used to capture this CO2 and includes case studies where these processes are happening. The work has evaluated CO2 utilisation in the context of cement and concrete production by looking into the effects of carbonation on material utilisation and the design of a potential carbonation plant. The market analysis and market pull of carbonated building products is also covered.

Technical Report

CO2 as a Feedstock: Comparison of CCU Pathways

  • 1 November 2021
  • Utilisation

The aim of this study is to present a holistic assessment of the viability (both technically and from a market perspective) of carbon capture and utilisation (CCU) routes and to identify areas of strength and weakness within individual routes, compare different CCU pathways, and identify common drivers, barriers, and enablers. The results of this study will be of interest to the technical community, as well as industry and manufacturers. The study assessed commodities across four different CCU categories (building materials, chemicals, polymers and fuels) regarding their mitigation potential, market uptake potential, technical scalability and other impacts.

Technical Report

CO2 Utilisation: Hydrogenation Pathways

  • 1 November 2021
  • Costs of CCUS
  • Utilisation

The aim of this study is to assess the feasibility of select carbon capture and utilisation (CCU) routes based upon CO2 conversion through hydrogenation, in terms of their climate change mitigation potential. The results of this study will be of interest to organisations/individuals involved with climate-change scenario modelling, as well as RD&D financial sponsors. The commodities selected for investigation were methanol, formic acid, and middle distillate hydrocarbons (synthetic fuels: diesel, gasoline, jet fuel), with a focus on catalytic hydrogenation pathways. Results of CO2 emissions, costs and energy consumption for formic acid, however, will not be presented in detail in this Overview, as the analysis has shown that the abatement is limited to 2 MtCO2 due to the small market size. (Results for formic acid are available in the full report.)

Technical Report

GHG Accounting for CCU Technologies – Characterising CCU technologies, policy support, regulation and emissions accounting

  • 1 March 2018
  • Policy & Regulation
  • Utilisation

Over recent years, interest in CO2 capture and utilisation (CCU) from policy-makers, industry and academics has increased dramatically, although uncertainty remains regarding the technology’s true potential to contribute towards wider greenhouse gas (GHG) emissions reduction goals. A range of views have been expressed in these contexts, but on the whole it remains largely speculative and unproven. Consequently, it is difficult to provide firm opinions on whether CCU technologies can make a meaningful and lasting contribution to tackling climate change. This report provides an assessment of the range of views presented by various stakeholders, and attempts to establish an empirical evidence base upon which to qualify the views and opinions expressed.Additionally, the key way to gain a clearer understanding of the potential for CCU technologies to reduce GHG emissions is to assess the overall energy and carbon balances for different CCU processes, and to take a view on how and whether these could make a contribution to GHG emission reductions. In other words, as noted by the Intergovernmental Panel on Climate Change (IPCC) in its 2005 Special Report on Carbon Dioxide Capture and Storage (SRCCS) ‘further study of the net energy and CO2 balance of industrial processes that use the captured CO2 could help to establish a more complete picture of the potential of this option’. Such detailed studies have, at best, only partially been carried out and are heavily reliant on the assumptions made in the analysis. Thus, IEAGHG has commissioned Carbon Counts (UK) Ltd to characterise CCU technologies, as well as their policy support, regulation and emissions accounting.

CCU Technology Review Synthesis

  • 1 March 2018
  • Utilisation

Based on the backdrop outlined, the overall aim of the study was to gain a better understanding of the potential of CCU technologies to contribute towards climate change mitigation objectives (i.e. by reducing emissions of anthropogenic CO2 to the atmosphere).

Costs of CCUS Publications

Understand how the costs of CCUS technologies can impact your projects.

View All Costs Publications
Technical Report

Techno-Economic Assessment of Small-Scale Carbon Capture for Industrial and Power Systems

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study, undertaken on behalf of IEAGHG by Element Energy (now a part of ERM), explores the role of CCS in decarbonising small-scale industry and power generation applications. While relatively under investigated compared to their larger scale counterparts, reaching net zero will be dependent on successfully addressing the emissions from small-scale facilities. The findings from the study will be of interest to the broader energy community but, in particular, should benefit project developers, the finance community and policymakers.

Technical Report

Clean steel an environmental and technoeconomic outlook of a disruptive technology

  • 1 March 2024
  • Capture
  • Costs of CCUS

This study primarily presents a comparative analysis of steelmaking pathways to cost-effectively decarbonise a steel mill, taking a life-cycle perspective on associated environmental impacts. The roll-out of clean steel technologies is envisioned to have a significant implication for support infrastructure. Therefore, a secondary objective of the study is to gain insights into the primary energy and infrastructure implications associated with large-scale deployment of different steel decarbonisation pathways. Clean steel production will likely be more expensive than steel produced today; this poses additional economic strains on steel producers and consumers. Consequently, a third objective is to estimate the price premium that clean steel could command in existing and future markets. Further, this study formulates recommendations for key stakeholders to support the sector and outlines recommendations for further work.

Technical Review

Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO2 from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Quantifying the Socio-Economic Value of CCS: A Review

  • 3 August 2022
  • Costs of CCUS
  • Public Perception

As policymakers consider options at their disposal to achieve the goals of the Paris Agreement, understanding the socio-economic impacts on local communities and industrial regions is crucial. Integrated assessment models (IAMs) often lack the economic, social and geographic detail to fully reveal the role that CCS and CDR technologies, such as BECCS, can play in national economies – noting that deployment of both CCS and BECCS has long continued to lag expectations. Providing a multi-regional, technology agnostic and transparent quantification of the social value of these technologies may be essential to unlocking this impasse.

Technical Report

Low-Carbon Hydrogen from Natural Gas: Global Roadmap

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to conduct a techno-economic and environmental assessment of the production of natural gas-based hydrogen with accompanying carbon capture and storage (CCS) technology. Further, the purpose of this study is to enrich knowledge and compare the deployment of steam methane reforming (SMR), electrified SMR (E-SMR), autothermal reforming (ATR), and partial oxidation (POX) with CCS in the Netherlands. The findings of this study will be of interest to policy makers, industrial emitters, as well as technology developers.

Technical Report

Blue Hydrogen: Beyond the Plant Gate

  • 1 August 2022
  • Capture
  • Costs of CCUS

The primary objective of this study is to review the comparative analysis of blue hydrogen production (that is hydrogen derived from fossil fuels and associated CCS) technologies from oil and oil-based feedstocks as well as the supply chain implication. Further, this study includes techno-economic and life cycle assessments of different technology production configurations in regions that have access to oil resources and potential for the deployment of CCS infrastructure at scale.

Technical Report

Global Assessment of Direct Air Capture Costs

  • 1 December 2021
  • Capture
  • Costs of CCUS

This study aims to improve the current DACCS cost-performance evidence base by synthesising data from the recent literature and technology developers to explore the economic feasibility of different DACCS technologies (both liquid and solid based systems) across timescales, capacities, configurations, and numerous global siting factors. It also provides recommendations for the integrated assessment modelling (IAM) community and policymakers to inform next steps for DACCS implementation and deployment.

Technical Report

Techno-economic Performance, Opportunities, and Challenges

  • 1 December 2021
  • Capture
  • Costs of CCUS

The aim of this study is to provide a transparent framework to evaluate the potential (in terms of sequestered and displaced carbon), and economics (in terms of cost of carbon avoided and removed) of a non-exhaustive selection of NETs pathways. Ecosystem and socio-economic impacts associated with their deployment is also quantified. The study sets out to help the carbon capture and storage (CCS) community in trying to gain a better understanding of the costs and value of NETs. It also helps the modelling community in being able to better model the role of NETs; and policy/decision makers in having more information on costs, value and scalability of NETs.

Technical Report

CO2 Utilisation: Hydrogenation Pathways

  • 1 November 2021
  • Costs of CCUS
  • Utilisation

The aim of this study is to assess the feasibility of select carbon capture and utilisation (CCU) routes based upon CO2 conversion through hydrogenation, in terms of their climate change mitigation potential. The results of this study will be of interest to organisations/individuals involved with climate-change scenario modelling, as well as RD&D financial sponsors. The commodities selected for investigation were methanol, formic acid, and middle distillate hydrocarbons (synthetic fuels: diesel, gasoline, jet fuel), with a focus on catalytic hydrogenation pathways. Results of CO2 emissions, costs and energy consumption for formic acid, however, will not be presented in detail in this Overview, as the analysis has shown that the abatement is limited to 2 MtCO2 due to the small market size. (Results for formic acid are available in the full report.)

Policy & Regulation Publications

Discover the impact and ramifications of CCS policy and regulation.

View All Policy & Regulation Publications
Technical Report

International Standards and Testing for Novel Carbonaceous Building Materials

  • 1 December 2023
  • Policy & Regulation
  • Utilisation

Over 4 billion tonnes of cement are produced each year, equating to approximately 8% of global anthropogenic CO2 emissions, and this industry will continue to grow with the expansion of the built environment at a time that emissions need to be reduced. The utilisation or reduction of CO2 within cement, concrete and building materials could be a valuable way to contribute to emissions reductions in the sector , but there are several barriers, including the current state of standards, regulations and policies. This study will provide useful information for the technical and research community, the CCUS industry, the construction industry, and policymakers, providing an unbiased and non-prescriptive evaluation of international standards and testing relevant to novel carbonaceous building materials to address some of those barriers. The market potential for CO2 utilisation processes in the construction industry is also investigated, and the methods for certifying and measuring embodied carbon content of carbonated building materials is evaluated and the challenges therein.

Technical Report

Integrating CCS in international cooperation and carbon markets under Article 6 of the Paris Agreement

  • 18 January 2023
  • Policy & Regulation

This work assesses the status of and outlooks for international cooperation under Article 6 of the Paris Agreement and considers how approaches could support the deployment of carbon capture and storage (CCS). It provides an up-to-date look at the Article 6 rules, the types of markets and mechanisms that could evolve, and the units that could be traded. It then considers how Article 6 could apply to CCS through linked emissions trading systems, crediting systems and alternative approaches.

Technical Report

Applying ISO Standards to Geologic Storage and EOR Projects

  • 1 September 2022
  • Policy & Regulation
  • Storage

The work aims to summarise and synthesise the two ISO Standards relevant to the geological storage of CO2: – ISO 27914:2017 (‘Carbon dioxide capture, transportation and geological storage – Geological storage’) and ISO 27916:2019 (‘Carbon dioxide capture, transportation and geological storage – Carbon dioxide storage using enhanced oil recovery (CO2-EOR)’) – to provide a high-level understanding of the content into an easily digestible format. By comparison with international regulatory frameworks, and providing case studies of how applicable the standards are to real CO2 storage projects, the study provides a comprehensive overview and concludes on the usefulness of the documents in supporting the implementation of CCUS projects. For the purposes of this overview, the standards will hereafter be referred to as ISO 27914 and ISO 27916

CCUS in national GHG inventories

  • 28 June 2021
  • Policy & Regulation

This report builds upon previous IEAGHG studies on the topic of carbon capture and utilisation (CCU) in order to assess the potential of a portfolio of CCU technologies to contribute towards Japan’s climate change mitigation goals in 2030 and 2050.

Exporting CO2 for Offshore Storage – The London Protocol’s Export Amendment and Associated Guidelines and Guidance

  • 12 April 2021
  • Policy & Regulation
  • Storage

The London Convention and London Protocol are the global treaties that protect the marine environment from pollution caused by the dumping of wastes. Since 2006, the London Protocol has provided a basis in international environmental law to allow carbon dioxide (CO2) storage beneath the seabed when it is safe to do so, and to regulate the injection of CO2 into sub-seabed geological formations for permanent isolation. However, Article 6 of the London Protocol prohibits the export of waste or other matter for dumping in the marine environment. Therefore in 2019, Contracting Parties to the London Protocol adopted a resolution to allow provisional application of the 2009 amendment to Article 6 of the Protocol to allow export of CO2 for storage in sub-seabed geological formations in advance of its ratification, which was progressing slowly.

Technical Report

CCS and the Sustainable Development Goals

  • 15 December 2020
  • Policy & Regulation

The overall objective of this assessment was to improve the availability and accessibility of information regarding the relevance of CCS in contributing to the achievement of the Sustainable Development Goals. The primary objective was achieved through the completion of three key goals: <ol> <!– wp:list-item –><!– wp:list-item –><li>Collation of existing information on impacts of CCS on specific targets of the 17 SDGs, using the rating, scoring and information assessment as per IPCC’s SR1.5,</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Articulation of specific gaps in information, and</li><!– /wp:list-item –><!– /wp:list-item –> </ol> Proposal of a path forward by providing a prioritised lists of gap closures.There is a growing body of literature orientated towards converting climate action into policies directed towards implementation of SDGs. There is also a trend of material becoming available examining the interaction of technologies and sectors against SDGs. CCS remains a complex technological solution to climate change, and public understanding of the technology remains low. This study can help to substantiate the wider value of CCS, but it can also highlight points of attention/action on potentially negative interactions with specific SDGs.

Technical Review

Integrated GHG accounting guidelines for CCUS

  • 1 November 2019
  • Policy & Regulation

This report sets out accounting guidelines for measuring greenhouse gas (GHG) emissions and emissions reduction effects arising from technologies involving carbon dioxide capture, utilisation and geological storage (CCUS).The guidelines apply a project- and product-based approach to measure GHG emission reduction effects, based on comparing the emissions for a CCUS activity with the emissions from a comparable activity delivering the same product or service.A modular approach is applied. Firstly, users calculate the GHG effects arising from the capture (and transport) of CO2 based on the avoided emissions from providing the same service or product as output from the CO2 source facility, but without CO2 capture.The resulting estimate of GHG effects from CO2 capture is carried forward to the utilisation or storage step. In this subsequent step, the GHG emissions from providing the same service without using captured CO2 is estimated and compared to the GHG emissions of providing the service using captured CO2. This provides an overall estimate of the cradle-to-gate GHG effect of CCUS activities.Additional guidance is provided on cradle-to-grave assessment, although this is not the primary focus of these guidelines – the Guidelines focus on annualised GHG emissions accounting cycles rather than whole life emissions analysis.

Technical Report

GHG Accounting for CCU Technologies – Characterising CCU technologies, policy support, regulation and emissions accounting

  • 1 March 2018
  • Policy & Regulation
  • Utilisation

Over recent years, interest in CO2 capture and utilisation (CCU) from policy-makers, industry and academics has increased dramatically, although uncertainty remains regarding the technology’s true potential to contribute towards wider greenhouse gas (GHG) emissions reduction goals. A range of views have been expressed in these contexts, but on the whole it remains largely speculative and unproven. Consequently, it is difficult to provide firm opinions on whether CCU technologies can make a meaningful and lasting contribution to tackling climate change. This report provides an assessment of the range of views presented by various stakeholders, and attempts to establish an empirical evidence base upon which to qualify the views and opinions expressed.Additionally, the key way to gain a clearer understanding of the potential for CCU technologies to reduce GHG emissions is to assess the overall energy and carbon balances for different CCU processes, and to take a view on how and whether these could make a contribution to GHG emission reductions. In other words, as noted by the Intergovernmental Panel on Climate Change (IPCC) in its 2005 Special Report on Carbon Dioxide Capture and Storage (SRCCS) ‘further study of the net energy and CO2 balance of industrial processes that use the captured CO2 could help to establish a more complete picture of the potential of this option’. Such detailed studies have, at best, only partially been carried out and are heavily reliant on the assumptions made in the analysis. Thus, IEAGHG has commissioned Carbon Counts (UK) Ltd to characterise CCU technologies, as well as their policy support, regulation and emissions accounting.

Technical Report

CCS deployment in the context of regional developments

  • 1 August 2017
  • Policy & Regulation

The aim of this study was to characterise key countries and regions worldwide where carbon capture and storage (CCS) could play an important role in mitigation efforts, based on national circumstances and priorities. An additional objective was to identify how international frameworks, such as the UNFCCC, can support CCS and what these new architectures would mean with respect to development of nationally determined contributions (NDCs).

Technical Report

RESERVED CO2EOR Accounting JK

  • 1 October 2016
  • Policy & Regulation
  • Storage

The report attempts to review issues associated with greenhouse gas emissions accounting where anthropogenic carbon dioxide is captured and used for enhanced oil recovery (CO2-EOR) in conjunction with long-term geological storage of CO2. Whilst this suggests a fairly narrow scope of research, it in fact opens up several lines of complex enquiry, requiring a strong understanding of global oil production, trade, supply and demand. This is a topic to which countless hours of debate and consideration are made on an ongoing basis, generally without any clear consensus in respect of matters such as ‘peak oil’, ‘carbon lock-in’ and fossil fuel ‘demand destruction’. It is also a topic that is highly political, with oil being at the heart of economic activity and life-style behaviour. As such, the analysis presented herein has required some simplifying assumptions in order to provide limits to the discussions presented. This has been carried out to the best of the authors’ capacity, commensurate with the time and resources available for the study. The report does not claim to provide a definitive view on how to resolve issues of greenhouse gas emissions accounting for CO2- EOR, but rather provides a source of ideas on how to establish a framework for considering the issues at hand, and food for thought in respect of further discussion and debate.

Event Proceedings

Get the essential recap of the latest IEAGHG events

View All Event Proceedings
Technical Review

7th Post-Combustion Capture Conference Summary

  • 1 April 2024
  • Capture
  • Event Proceedings

The 7th edition of the Post Combustion Capture Conference (PCCC-7) was held on the 25?28 September 2023 and was jointly hosted by the IEAGHG, U.S. Department of Energy (DOE) and the National Energy Technology Laboratory (NETL) and sponsored by Worley, Shell, and Mitsubishi Heavy Industries. (MHI).

Technical Review

Monitoring Network Meeting Report

  • 1 December 2023
  • Event Proceedings
  • Storage

The IEAGHG Monitoring Network aims to assess new technologies and techniques in the monitoring of CO2 storage, determine the limitations, accuracy and applicability of monitoring techniques, disseminate information from research and pilot storage projects around the world, develop extensive monitoring guidelines for the different sub-categories of geological storage; oil and gas fields, unmineable coal seams, and saline aquifers covering the differing conditions and reservoir properties encountered globally as well as to engage with relevant regulatory bodies.

Technical Review

6th International Workshop on Offshore Geologic CO2 Storage

  • 1 December 2023
  • Event Proceedings
  • Storage

The 6th International Workshop on Offshore Geologic CO2 Storage was held in Aberdeen on 13-14 September. Organised with the University of Texas and hosted by the University of Aberdeen. The loca on was very appropriate as we were co-hosted and sponsored by Storegga who leads the Acorn project nearby in Scotland. This project had been recently announced by the UK government as a Track 2 Cluster project. This 6th workshop had 190 delegates (60 in-person and 130 virtual) from 35 countries, with a good mix of industry, researchers and regulators.

Technical Review

Cost Network Proceedings

  • 1 November 2023
  • Costs of CCUS
  • Event Proceedings

The 7th edition of the IEAGHG CCS Cost Network Workshop was hosted at the University of Groningen, Netherlands, on 12-13 April 2023. The purpose of the workshop was to share and discuss the most current information on the costs of carbon capture and storage (CCS) in various applications, as well as the outlook for future CCS costs and deployment. For the first time, this workshop also included a session on the direct capture of CO2 from the atmosphere. The workshop also sought to identify other key issues or topics related to CCS costs that merit further discussion and study.

Technical Review

Risk Management Network Meeting Report

  • 29 September 2023
  • Event Proceedings
  • Storage

The Risk Management Network meeting was held as an in-person event with a particular focus on the risk of wells (particularly legacy wells) in a CCS project, looking at the topic from basin scale through to detailed characterisation of well materials and monitoring. Attended by over 75 delegates from 15 countries, the two day meeting was held at Heriot-Watt University in Edinburgh, UK. It was kicked off by a welcome reception in the Lyell Centre (home to both BGS and the Institute for GeoEnergy Engineering) and was followed by a field excursion to explore the geological history of Arthur’s Seat in Edinburgh and a tour of a very new distillery located in an old train station within stone’s throw of Holyrood Park.

Technical Review

9th HTSLCN Meeting Report

  • 21 September 2023
  • Capture
  • Event Proceedings

The 9th High Temperature Solid Looping Cycles Network (HTSLCN) Meeting took place from 14th to 15th March 2023 at Palazzo Farnese in Piacenza, Italy, hosted by the CLEANKER consortium. 82 attendees enjoyed a two-day programme with a total of 28 presentations, the official closure of the CLEANKER project with a visit to the pilot plant, a relaxing dinner and a guided tour in the museum of Palazzo Farnese about the millennial history of the city of Piacenza and its territory, from the preRoman age to the XX century.

5th International Workshop on Offshore Geologic CO2 Storage

  • 17 October 2022
  • Event Proceedings
  • Storage

This 5th Workshop on Offshore Geologic CO<sub>2</sub> Storage covered multiple subjects, including: summary of multiple CCS projects worldwide, subsurface considerations for depleted hydrocarbon fields, containment/ pressure management, and saline formations to store CO<sub>2</sub>, as well as considerations on regulating offshore CCS, monitoring offshore CCS projects, CO<sub>2</sub> shipping and infrastructure for CO<sub>2</sub>. Importantly, this is the first hybrid in-person and virtual workshop, which represents a milestone to bring this knowledge sharing to multiple people interested on CCS worldwide

Carbon Dioxide Removal (CDR) Workshop, Bergen, Norway, 28th June 2022

  • 5 August 2022
  • Capture
  • Event Proceedings

The aim of the workshop was to provide members and other stakeholders with an update on the status of CDR, identify crucial knowledge gaps and the mechanisms to resolve them, and find possible cooperation/collaboration opportunities.

IEAGHG Risk Management Network – Webinar & Virtual Discussion: The Road to CCS Project Permitting

  • 31 March 2022
  • Event Proceedings
  • Storage

On Tuesday 18<sup>th</sup> January 2022, the IEAGHG Risk Management Network held a webinar which aimed to be a roundtable presentation of CCS / CCUS (carbon capture and storage / carbon capture, utilisation and storage) project operator experience, with risk management, during the permitting process.  This webinar heard from panellists on the Northern Lights project, the Porthos project, California experiences with permitting and Oxy’s recent project experiences. The webinar attracted an audience of 138 in addition to 8 panellists and 2 IEAGHG staff.

Global Storage Capacity Workshop 2021

  • 18 February 2022
  • Event Proceedings
  • Storage

The aims of this workshop were to review current methodologies and initiatives for quantifying CO2 geological storage, review current data availability and assess gaps, establish core international contacts and a community with direct interest in CO2 storage resource. The workshop also discussed opportunities on how to address the identified data gaps in various parts of the world, through either bilateral or multilateral collaboration and via an international network to collate and refine estimates of CO2 storage capacity.

Public Perception Publications

Learn how public perception of CCS can affect projects.

View All Public Perception Publications

Quantifying the Socio-Economic Value of CCS: A Review

  • 3 August 2022
  • Costs of CCUS
  • Public Perception

As policymakers consider options at their disposal to achieve the goals of the Paris Agreement, understanding the socio-economic impacts on local communities and industrial regions is crucial. Integrated assessment models (IAMs) often lack the economic, social and geographic detail to fully reveal the role that CCS and CDR technologies, such as BECCS, can play in national economies – noting that deployment of both CCS and BECCS has long continued to lag expectations. Providing a multi-regional, technology agnostic and transparent quantification of the social value of these technologies may be essential to unlocking this impasse.

Technical Report

Social Research Network 2015

  • 1 January 2016
  • Event Proceedings
  • Public Perception

This work looked into adopting a place-based approach to better understand responses of the public to the siting of projects involving low-carbon technologies. The research examined public reactions to an offshore wind farm, a power line proposal and a tidal energy project in the UK. Theorising the concept of ‘place’ has two aspects to it – a place as a locus of attachment/identity and a place as a centre of meaning. With the latter, these meanings are not fixed and people have different thoughts or feelings about them. ‘Place attachment’ describes the emotional bonds between people and particular environments (which can be attachment or non-attachment), where ‘place identity’ refers to the ways in which places reflect and maintain identities for individuals or groups. This work argues the value of capturing place attachments and their related meanings to explain local responses to siting of infrastructure proposals, but notes that each in isolation is insufficient to explain why. It was felt that there is value in conducting and comparing multiple case studies across contexts and sectors to further examine the influence of place on consumers.

Technical Report

4th Social Research Network Meeting

  • 1 October 2014
  • Event Proceedings
  • Public Perception

 The overall aim of the Social Research Network is “to foster the conduct and dissemination of social science research related to CCS in order to improve understanding of public concerns as well as improve the understanding of the processes required for deploying projects”.

Technical Report

Key Messages for Communications Needs for Key Stakeholders

  • 1 March 2013
  • Public Perception

The main deliverables from the study will be a series of Briefing Notes (BNs) covering the key information needs of key stakeholders, and a series of shorter Information Sheets (ISs) which provide a more basic introduction to the same topics. Note: the BN’s are the main deliverable of the study, and the ISs will be finalised and circulated after the technical report has been produced and disseminated. The study will work from, but not exclusively from, IEAGHG’s technical studies and reviews to identify the topics requiring BNs and the final BN’s will be reviewed by members of the Social Research Network, among others, as part of the peer review

Technical Report

Summary Report of the 3rd IEAGHG SRN Meeting

  • 1 October 2012
  • Event Proceedings
  • Public Perception

The overall aim of the Social Research Network is “to foster the conduct and dissemination of social science research related to CCS in order to improve understanding of public concerns as well as improve the understanding of the processes required for deploying projects”. The objectives of the Network are as follows: <!– wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} –> <!– wp:acf/column-content {"name":"acf/column-content","mode":"preview"} –> <!– wp:list –><ul> <!– wp:list-item –><!– wp:list-item –><li>Ensure high quality social science research <!– wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} –> <!– wp:acf/column-content {"name":"acf/column-content","mode":"preview"} –> <!– wp:list –><ul> <!– wp:list-item –><!– wp:list-item –><li>Elevate reputation and acceptance of social science research</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Consistency of research</li><!– /wp:list-item –><!– /wp:list-item –> </ul><!– /wp:list –> <!– /wp:acf/column-content –> <!– /wp:acf/columns –> </li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Identifying gaps</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Promoting a learning environment</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Building capacity within the Network</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Translate information from studies into tools or applied lessons <!– wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} –> <!– wp:acf/column-content {"name":"acf/column-content","mode":"preview"} –> <!– wp:list –><ul> <!– wp:list-item –><!– wp:list-item –><li>Apply insights to actual projects</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Interact with technical experts</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Communicate results to policy makers</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Ensure application is grounded in theory</li><!– /wp:list-item –><!– /wp:list-item –> </ul><!– /wp:list –> <!– /wp:acf/column-content –> <!– /wp:acf/columns –> </li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Create a clearing house of social science research</li><!– /wp:list-item –><!– /wp:list-item –> </ul><!– /wp:list –> <!– /wp:acf/column-content –> <!– /wp:acf/columns –>

Technical Report

Summary Report of the 2nd IEAGHG Social Research Network Meeting

  • 1 November 2011
  • Event Proceedings
  • Public Perception

The two day workshop discussed methodologies and techniques, working in contentious environments, social science CCS research in Japan, learnings from other energy technology research, use of social media, knowledge gaps which need to be addressed in future research and future aims of the IEAGHG Social Research Network (SRN).

Technical Review

1st Social Research Network Meeting

  • 1 June 2010
  • Event Proceedings
  • Public Perception

As this was the first IEA GHG Social Research Network meeting, group discussions took place to identify the overarching aims and objectives of the network. After much discussion and reiteration it was agreed that the overarching aim should be: To foster the conduct and dissemination of social science research related to CCS in order to improve understanding of public concerns as well as improve the understanding of the processes required for deploying projects

Technical Review

The Landscape of Carbon Dioxide Capture, Storage and Management (CCSM) Education in the UK

  • 1 August 2009
  • Industry Insights
  • Public Perception

This report was commissioned by the IEA Greenhouse Gas R&D Programme (IEA GHG) to assist the Carbon Sequestration Leadership Forum (CSLF) task force in the assessment of international graduate degrees at MSc and PhD level on Carbon Dioxide Capture, Storage, and Carbon Management (hereinafter CCSM) from universities. The scope of this report is to identify academic perspectives and programs in the areas of CCSM currently available in the United Kingdom (UK). The information assembled in this report was sought from the internet, email contacts and visiting key universities. This report addresses the major findings and discusses the current landscape of CCSM education in the UKThis report has concentrated on courses provided in the UK. In addition, mention should be made that from a base in the UK the IEA GHG organises an annual International CCS Summer School. This is hosted at different locations worldwide each time; Germany, Canada and Australia in the first three years. This course offers an intensive week in all aspects of CCS, from capture to storage, and non-technical topics such as economics, policy, regulation, safety and public communication.   

Technical Review

IPCC SRCCS Media Impact

  • 1 July 2006
  • Industry Insights
  • Public Perception

To undertake this review of media impact IEA GHG agreed contracts with two specialist organisations. The first of these studies was agreed with the Copernicus Institute, University of Utrecht, the Netherlands and the second with Tyndall Centre, University of Manchester, UK. Two contracts were agreed because of the different approaches used and the different geographical distribution of the media searches proposed. The Copernicus Institute proposed to use a web based search tool to review media articles in the European press, the countries covered included; UK , Netherlands, France, Spain , Italy and Germany. In contrast, the Tyndall Centre study involved a dedicated exercise where an individual would review news articles in the English speaking press alone. This review covered newspaper articles in: UK, USA, Canada, Australia and New Zealand. In each case, articles were scanned for three months before the release of the IPCC SRCCS (released week 39, 26th -30th September 2005) and for three months after. Overall, it was considered that the two studies gave a good global coverage of media response covering most regions of the world that were actively developing CCS projects with the noted exception of Japan.

Industry Insights

Get insight and analysis on developments in the CCS sector.

View All Industry Insight Publications
Technical Report

The Role of Indices in Assessing the Maturity of CCUS Technologies and their Readiness for Deployment

  • 1 February 2024
  • Industry Insights

This study was undertaken on behalf of IEAGHG by Foresight Transitions Ltd. While a technology may be technically mature, it has become increasingly clear that the technology may not necessarily be considered commercially ‘bankable’ by investors. In this study, the potential for an index or indices to provide that confidence was explored. The findings from the study will be of interest to the broader energy community but, in particular, should benefit technology developers, CCUS end users, investors and policymakers.

Methologies and Technologies for Mitigation

  • 1 December 2023
  • Industry Insights

The driver behind this study is to develop a report built on the on the previous IEAGHG report on methods of leakage mitigation (2007/11). The proposed study should focus on current mitigation and remediation methods that may be applied or considered in site specific conditions in the event of unpredicted CO2 migration. Each geological storage site will have an adaptive site specific monitoring plan, based on a risk assessment. Detection of a significant irregularity may involve supplementing the monitoring program, in order to detect a possible leak and if necessary engaging mitigation measures.

Technical Review

A bibliometric analysis of GHGT abstract submissions

  • 14 June 2023
  • Industry Insights

This technical review provides an insight into how the focus of research in the field of Carbon Capture, Utilisation and Storage (CCUS) has evolved across a decade, from 2012–2022. It is designed to help understand where the most research has been conducted, and to see where CCUS research is going.

Technical Report

Review of Constructability and Operational Challenges faced by CCUS projects

  • 9 September 2020
  • Industry Insights

IEAGHG has commissioned several technical studies linked to large CCS projects1. Although constructability and operational challenges have been identified in previous IEAGHG reports, some aspects were unique due to the locations where the large CCS projects were implemented. These included the status of the initial facilities and other techno-economic and financial aspects of the specific CCUS projects. IEAGHG identified the need to provide a guide on constructability and operation for new CCS users. The objective of this study is to collect information from CCS projects to support the decisions during the transition from the planning to the execution phase. This study analysed a complete list of large CCUS projects from which relevant experience could be extracted. The projects were divided into three categories: operating projects; under construction or at advanced development; and cancelled projects. Based on the analysed projects, this study has delivered an assessment of potential key areas for success, and a decision tool guide for future projects

Technical Report

CCS in Energy and Climate Scenarios

  • 1 July 2019
  • Industry Insights

The purpose of IAMs is to quantify the interactions and trade-offs between societal demands for energy, economic and environmental services, using a systems approach. These systems are typically the energy system, the economy, the earth-land system, the water system and atmospheric climate system, although every IAM does not necessarily include all these systems and have varying

Technical Report

Sustainability in Petrochemicals

  • 1 February 2019
  • Capture
  • Industry Insights

This report investigates a unique combination of these industry drivers on the historic, current and future status of the petrochemical industry to gain insight into the sustainability of petrochemicals. Three categories of petrochemicals are subject to analysis, namely methanol, olefins and ammonia/urea. For each of these petrochemicals, the following series of studies are formed and analysed in aggregate to gain insight in to the sustainability prospects of the industry:<!– wp:acf/columns {"name":"acf/columns","data":{"padding_top":"1","_padding_top":"field_columns_fields_padding_top","padding_bottom":"1","_padding_bottom":"field_columns_fields_padding_bottom","margin_top":"0","_margin_top":"field_columns_fields_margin_top","margin_bottom":"0","_margin_bottom":"field_columns_fields_margin_bottom"},"mode":"preview"} –> <!– wp:acf/column-content {"name":"acf/column-content","mode":"preview"} –> <!– wp:list –><ul><!– wp:list-item –><!– wp:list-item –><li>An assessment of the historic and current status of market trade, including trends in end-uses, feedstocks, demand, production and international trade. Demand projections for each chemical are made based on collected data.</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Process engineering characterisation of the current and low carbon alternative routes and feedstocks to produce the key petrochemical productions.</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Environmental life cycle assessment of the various feedstocks and production methods for each petrochemical and a contribution analysis of the key environmental impacts.</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>Market projection of petrochemical production and technology mixes for a key region China, for the time period 2010 – 2050.</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>A series of expert stakeholder interviews on views of how the petrochemical industry may progress in terms of demand, costs, environmental impacts and policy drivers.</li><!– /wp:list-item –><!– /wp:list-item –></ul><!– /wp:list –> <!– /wp:acf/column-content –> <!– /wp:acf/columns –>

Technical Report

The CCS Project at Air Products’ Port Arthur Hydrogen Production Facility

  • 1 December 2018
  • Industry Insights

In April 2013, the first commercial-scale, steam methane reformer hydrogen production facility incorporating vacuum-swing adsorption carbon capture gas separation technology began full-scale operation at Air Products’ facilities located on the site of the Valero Port Arthur Refinery in Texas, USA. This report summarizes the experience of Air Products and its partners that will provide valuable insights to other petroleum refining and petrochemical industrial facilities that wish to reduce their lifecycle greenhouse gas emissions through CCUS.

Technical Report

Enabling CCS Clusters

  • 1 February 2018
  • Industry Insights

It is widely considered that deployment of carbon capture and storage (CCS) for clusters of energy intensive industries (EIIs) will become vital for meeting long-term greenhouse gas (GHG) reduction targets, and is a cost effective way for doing so, according to organisations such as the International Energy Agency (IEA) and Intergovernmental Panel on Climate Change (IPCC). In addition, it will be important to develop the related finance mechanism quickly to prevent carbon leakage, i.e. businesses transferring operations to places with less stringent GHG emission standards. Recent evidence highlights there might be different needs and challenges in deployment of industrial clusters, compared to those involving power generation. IEAGHG’s Technical Report 2015/03 “Carbon capture and storage cluster projects: review and future opportunities” reviews 12 CCS cluster projects and finds that the most successful clusters are currently based on CO2-EOR in North America. This is to be expected as EOR provides a commercial benefit to investors in such activities.Further requirements for ICCS clusters include: generating confidence for per-investment in CCS infrastructure, new methods to attract international investment and systematic development of CCS cluster business plans. However, more information is necessary regarding the transferability of conclusions for CCS clusters based on power generation incentives, such as a UK Contract for Difference (CfD), to those involving multiple industry sectors, and especially EIIs.This study examines the economic and commercial arrangements needed to enable the global deployment of industrial CCS clusters. Over a period of eight months, with significant input from stakeholders from industry, government and the investment community, the project has identified the key enablers to unlock private investment in ICCS and developed four business models, which are expected to work in various regions around the world including North America, Europe, Australia and China.

Technical Review

Gas Supply Chain Emissions

  • 1 October 2017
  • Industry Insights

This technical review has been undertaken with the aim of providing a summary of the current status of research into greenhouse gas emissions in the natural gas supply chain. Although 90% or more of the CO<sub>2</sub> produced at gas fired power plants can be captured, emissions from the supply chain may reduce the near-zero-emission image of gas as an energy source. Emissions are predominantly from two sources: <ol> <!– wp:list-item –><!– wp:list-item –><li>Methane emissions during production and also fugitive emissions during transport.</li><!– /wp:list-item –><!– /wp:list-item –> <!– wp:list-item –><!– wp:list-item –><li>CO<sub>2</sub> emissions from gas production installations, gas purification plants, pipeline compressors, LNG liquefaction plants, ships and receiving terminals.</li><!– /wp:list-item –><!– /wp:list-item –> </ol>

Technical Review

ReCAP Project Understanding Cost of Retrofitting

  • 1 August 2017
  • Costs of CCUS
  • Industry Insights

The main purpose of the study was to evaluate the cost of retrofitting CO2 capture in a range of refinery types typical of those found in Europe. These included bo0th simple and high complexity refineries covering typical European refinery capacities from 100,000 to 350,000 bbl/d.  The assessments performed in this report focused on retrofit costs including modifications in the refineries, interconnections, and additional CHP and utility facilities. The main focus of the study was on CO2 capture from refinery Base Case 4, which was considered to be the most relevant reference for existing European refineries of interest for CO2 capture retrofit. Considering the large number of cases (16) and their complexity, a hybrid methodology is used to evaluate the cost of the sections (CO2 capture and compression, utilities, and interconnecting) of the concept. In this approach, four of the 16 capture cases were selected to represent a wide range of CO2 capture capacity and flue gas CO2 content. In each case, detailed assessments were undertaken. These detailed cost assessments form, based on subsequent scaling, the basis for the assessment of the other cases. The scaling equations have a larger purpose in that they can be used by refineries/policy experts to evaluate capital costs of retrofitting CO2 capture to refineries of interest.